Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Insights into the levulinate-based ionic liquid class: synthesis, cellulose dissolution evaluation and ecotoxicity assessment

Andrea Mezzetta, ^[a] Stefano Becherini, ^[a] Carlo Pretti, ^[b,c] Gianfranca Monni, ^[c] Valentina Casu, ^[c] Cinzia Chiappe ^[a] and Lorenzo Guazzelli *^[a]

Supporting Information

Table of contents

¹ H- and ¹³ C-NMR spectra of Lev ILs	pages S2-S11
IR spectra of Lev ILs	pages \$12-\$15
Thermal gravimetric analysis (TGA) of Lev ILs	pages S16-S19
Images of dissolved MCC in Lev ILs at maximum wt%	pages S20-S25
Optical microscopy of dissolved MCC in Lev ILs at maximum wt%	pages S26-S33
IR spectra of pristine MCC and regenerated cellulose after dissolution in Lev ILs	
	pages S34-S38
XRD measurements of MCC and regenerated cellulose from [EMIM][Lev]	page S39

[a]	A. Mezzetta, S. Becherini, C. Chiappe, L. Guazzelli
	Department of Pharmacy
	University of Pisa
	Via Bonanno 6, Pisa (Italy)
	*E-mail: lorenzo.guazzelli@unipi.it
[b]	C. Pretti
	Department of Veterinary Sciences,
	University of Pisa,
	Via Livornese lato monte, San Piero a Grado (PI) 56122, Pisa,
	Italy
[c]	C. Pretti, G. Monni, V. Casu
	Interupivorsity Consertium of Marine Pielogy of Leghern "C

Fig S1. ¹H NMR of EMIMLev at 25 °C

Fig S2. ¹³C NMR of EMIMLev at 25 °C

Fig S3. ¹H NMR of EMIMLev (25 °C) recycled after the second cycle of dissolution of MCC at 100 °C

Fig S4. ¹H NMR of EMIMLev (coaxial, 25 °C) after 12h at 120 °C (thermal stability test)

Fig S5. ¹H NMR of BMIMLev at 25 °C

Fig S6. ¹³C NMR of BMIMLev at 25 °C

Fig S7. ¹H NMR of N₈₈₈₁Lev at 25 °C

Fig S8. ¹³C NMR of **N**₈₈₈₁Lev at 25 °C

Fig S10. ¹³C NMR of P₈₈₈₁Lev at 25 °C

Fig S15. Thermal gravimetric analysis (TGA) of EMIMLev

Fig S16. Thermal gravimetric analysis (TGA) of BMIMLev

Fig S17. Thermal gravimetric analysis (TGA) of N₈₈₈₁Lev

Fig S18. Thermal gravimetric analysis (TGA) of P₈₈₈₁Lev

Fig S19: Pictures of dissolved MCC in EMIMLev: 25 °C, 6 wt% (A); 40 °C, 8 wt% (B); 60 °C, 18 wt%(C); 80 °C, 26 wt%(D); 100 °C, 29 wt%(E)

Fig S20: Picture of undissolved MCC in EMIMLev (100 °C, 30 wt%)

Fig S21: Dissolved MCC in EMIMLev, at 60 °C, with addition of a precise amount (10% mol) of contaminants: H₂O (A), MeOH (B), EtOH (C)

Fig S22: Pictures of under vacuum dissolved MCC in **EMIMLev**: 25 °C, 8 wt% (**A**); 40 °C, 12 wt% (**B**); 60 °C, 20 wt%(**C**); 80 °C, 33 wt%(**D**); 100 °C, 38 wt%(**E**)

Fig S23: Pictures of under vacuum undissolved MCC in **EMIMLev** (**A**) (100 °C, 38.5 wt%) and under vacuum dissolved MCC in two-time recycled **EMIMLev** (**B**) (100 °C, 37% MCC)

Fig S24: Picture of dissolved MCC in BMIMLev: 25 °C, 2 wt% (A); 40 °C, 7 wt% (B); 60 °C, 16 wt% (C); 80°C, 22 wt%(D); 100 °C, 24 wt%(E)

Fig S25: Picture of under vacuum dissolved MCC in **BMIMLev**: 25 °C, 3 wt%(**A**); 40 °C, 12 wt% (**B**); 60 °C, 25 wt% (**C**); 80°C, 31 wt%(**D**); 100 °C, 34 wt%(**E**)

Fig S26: Picture of under vacuum undissolved MCC in BMIMLev (100 °C, 34.5 wt%)

Fig S27: Pictures of dissolved MCC in N₈₈₈₁Lev/DMSO: 60 °C, 9 wt% (A); 80 °C, 10 wt% (B); 100 °C, 12 wt%(C). MCC dissolved in N₈₈₈₁Lev/DMSO under vacuum at room temperature: 25 °C, 13 wt% (D)

Fig S28: Pictures of dissolved MCC in P₈₈₈₁Lev/DMSO: 60 °C, 7 wt% (A); 80 °C, 8 wt% (B); 100 °C, 10 wt%(C). Cellulose dissolved in P₈₈₈₁Lev/DMSO under vacuum at room temperature: 25 °C, 11 wt% (D)

Fig S30: Microcrystalline cellulose not completely dissolved in EMIMLev (100 °C, 30 wt%), 4x(A) and 15x (B),

Fig S32: Optical microscopy of MCC dissolved in BMIMLev (100 °C, 24 wt%), 4x(A) and 15x (B)

Fig S35: Microcrystalline cellulose not completely dissolved in N₈₈₈₁Lev/DMSO (100 °C, 13 wt%), 4x(A) and 15x (B),

Fig S37: IR of MCC

Fig S38: IR of regenerated cellulose after dissolution in EMIMLev at 100 °C

Fig S39: IR of regenerated cellulose after dissolution in BMIMLev at 100 °C

Fig S40: IR of regenerated cellulose after dissolution in N₈₈₈₁Lev/DMSO at 100 °C

Fig S41: IR of regenerated cellulose after dissolution in P₈₈₈₁Lev/DMSO at 100 °C

Fig S42: Interferograms of MCC and regenerated cellulose from [EMIM][Lev] at various temperatures