Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

Synthesis of new triazole linked carbohybrids with ROS-mediated toxicity in breast cancer

Priti Kumari,^{a†} Shraddha Dubey,^{b†} Sneha Venkatachalapathy,^{a†} Chintam Narayana,^a Ashish Gupta^{*b} and Ram Sagar^{*a,c}

^aDepartment of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.

^bDepartment of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.

^cDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.

*E-mail (Corresponding author): ram.sagar@bhu.ac.in; ashish.gupta@snu.edu.in,

[†]equal contribution

S. No.	Contents	Page No.
1	Synthesis of 4-O-propargyl coumarins and quinolones 11-20	S2
2	Spectral data of 4-O-propargyl coumarins and quinolones 11-20	S3-S6
2	Synthesis of azido glycosides 23-24 and spectral data	S6-S7
3	Copies of ¹ HNMR and ¹³ C NMR of 4-O-propargyl coumarins and	S8-S17
	quinolones 11-20	
4	Copies of ¹ HNMR and ¹³ C NMR of azido glycosides 23-24	S18-S19
5	Copies of ¹ HNMR and ¹³ C NMR of triazole linked <i>N</i> -glycosides 25-51	S20-S46
6	Results of Cell Viability Assays	S47-S50

Table S1. Synthesis of 4-O-propargyl coumarins and quinolones 11-20

Entry	R ¹	R ²	R ³	R ⁴	Х	Product ^a	Yield (%)
1	Н	Н	Н	Н	0	11	70
2	Н	OCH ₃	Н	Н	Ο	12	71
3	Н	Cl	Н	Н	Ο	13	72
4	Н	CH ₃	Н	Н	Ο	14	72
5	Н	Br	Н	Н	Ο	15	73
6	Н	Н	F	Н	Ο	16	77
7 ^b	Н	Н	Н	Н	NH	17	40
8 ^b	Н	Н	Н	F	NH	18	37
9 ^b	Н	Н	Н	NO_2	NH	19	59
10 ^b	Н	Н	Н	OCF ₃	NH	20	41

^{*a*}Isolated yield, ^{*b*} in these cases di and trisubstituted propargyl products were also formed but yield is reported here for required one.

Typical method for the synthesis of 4-*O*-propargylated Coumarins and Quinolones 11-20. In a 100 ml round, bottom flask taken 500 mg (3.08 mmol) of 4-hydroxycoumarin in dry DMF then added K_2CO_3 (1.062 gm, 7.7 mmol) and stirred for half an hour. Then added propargyl bromide (0.231 ml, 363 mg, 3.08 mmol) and reaction mixture refluxed for 2 h. The progress of reaction was monitored bt TLC. Completion of reaction was confirmed by TLC. Then reaction mixture was quenched by aq. solution of NaHCO₃ and extracted with ethyl acetate (3 × 20 ml). The, organic layer dried over anhydrous Na₂SO₄, Crude mixture was purified by flash column chromatography. Same reaction protocol followed for 12-20.

4-(prop-2-yn-1-yloxy)-2H-chromen-2-one (11): Light pink amorphous solid, $R_f = 0.64$ (4:6, Ethyl acetate:hexave, v/v), ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 1.2 Hz,8.0 Hz,1H), 7.58-7.54 (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.30-7.28 (m, 1H), 5.83 (s, 1H, H-3), 4.87 (d, J = 2.4 Hz, 2H), 2.68 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 153.3, 132.6, 124.0, 123.0, 116.8, 91.7, 56.8. HRMS (ESI) m/z calcd for C₁₂H₈O₃ [M+H]⁺ 201.0546; Found: 201.0557.

6-methoxy-4-(prop-2-yn-1-yloxy)-2H-chromen-2-one (12): Brown amorphous solid, $R_f = 0.54$ (4:6, Ethyl acetate:Hexane, v/v) ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 2.0 Hz, 1H), 7.25 (d, J = 2.8 Hz, 1H), 7.15 (dd, J = 2.8 Hz, J = 8.8 Hz, 1H), 5.85 (s, 1H, H-3), 4.89 (d, J = 2.0 Hz, 2H), 3.87 (s, 3H, OCH₃), 2.69 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 155.9, 147.8, 120.7, 117.9, 104.8, 91.9, 56.8, 55.8, 53.3; HRMS (ESI): m/z calcd for C₁₃H₁₀O₄ [M+H]⁺ 231.0652; Found: 231.0664.

6-*chloro-4*-(*prop-2-yn-1-yloxy*)-2*H*-*chromen-2-one* (13): Off white amorphous solid, R_f = 0.67 (4:6, Ethyl acetate:Hexane, v/v) ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 2.0 Hz, 1H), 7.48 (dd, *J* = 2.4 Hz, *J* = 8.8 Hz,1H), 7.24 (d, *J* = 1.6 Hz, 1H), 5.83 (s,1H, H-3), 4.85 (d, *J* = 2.0 Hz, 2H), 2.67 (t, *J* = 2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 161.7, 151.7, 132.5, 129.6, 122.7, 118.2, 116.5, 92.4, 78.2, 75.3, 57.0; HRMS (ESI): *m*/*z* calcd for C₁₂H₇ClO₃ [M+H]⁺ 235.0156; Found: 235.0164.

6-methyl-4-(prop-2-yn-1-yloxy)-2H-chromen-2-one (14): Light pink amorphous solid, $R_f = 0.66$ (4:6, Ethylacetate : Hexane, v/v), ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 5.80 (s, 1H, H-3), 4.85 (d, J = 2.0 Hz, 2H), 2,66 (brs, 1H), 2.40 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 162.6, 151.5, 133.7, 133.5, 122.7, 116.5, 91.6, 56.7, 20.8; HRMS (ESI): m/z calcd for C₁₃H₁₀O₃ [M+H]⁺ 215.0703; Found: 215.0711.

6-bromo-4-(prop-2-yn-1-yloxy)-2H-chromen-2-one (15): Yellow colour amorphous solid, $R_f = 0.64$ (4:6, Ethyl acetate: Hexane, v/v) ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1H), 7.64 (d, J = 6.8 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 5.84 (s, 1H, H-3), 4.87 (brs, 2H), 2.69 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 152.2, 135.3, 125.7, 118.5, 116.9, 116.8, 92.4, 78.2, 75.3, 57.0, 53.4; HRMS (ESI): m/z calcd for C₁₂H₇BrO₃ [M+H]⁺ 280.9632; Found: 280.9631.

7-*fluoro-4*-(*prop-2-yn-1-yloxy*)-2*H*-*chromen-2-one* (16): Light brown amorphous solid, $R_f = 0.59$ (4:6, Ethylacetate:Hexane, v/v) ¹H NMR (400 MHz, CDCl₃): δ 7.83(dd, J = 6.0 Hz, J = 8.4 Hz, 1H), 7.06-7.03 (m, 1H), 7.01 (dd, J = 2.8 Hz, J = 8.4 Hz, 1H), 5.78 (s, 1H, H-3), 4.87 (d, J = 2.4 Hz, 2H), 2.68 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 164.1, 163.9, 162.2, 154.7, 154.6, 125.1, 125.0, 112.3, 112.1, 104.4, 104.2, 90.8, 90.80, 78.1, 75.6, 57.0; HRMS (ESI): m/z calcd for C₁₂H₇FO₃ [M+H] ⁺219.0452; Found: 219.0457.

4-(prop-2-yn-1-yloxy)quinolin-2(1H)-one (17): Light Brown amorphous solid, $R_f = 0.07$ (4 : 6, Ethyl acetate : Hexane, v/v), ¹H NMR (400 MHz, CDCl₃): δ 11.43 (brs, 1H, NH), 7.76 (d, J = 8.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.19-7.15 (m, 1H), 5.96 (s, 1H, H-3), 5.00 (d, J = 2.0 Hz, 2H), 3.75 (t, J = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 161.1, 139.1, 131.5, 122.6, 121.9, 115.7, 114.7, 98.6, 79.8, 78.3, 56.84 HRMS (ESI): m/z calcd for C₁₂H₉NO₂ [M+H]⁺ 200.0706; Found: 200.0528.

8-fluoro-4-(prop-2-yn-1-yloxy)quinolin-2(1H)-one (18): Off white amorphos solid, $R_f = 0.14$ (4:6, Ethylacetate:Hexane, v/v), ¹H NMR (400 MHz, CDCl₃): δ 11.47 (brs,1H), 7.59 (d, J = 8.0 Hz, 1H), 7.45 (m, 1H), 7.17(brs, 1H), 6.03 (s, 1H, H-3), 5.02 (brs, 2H), 3.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 161.3, 127.7, 122.1, 118.5, 117.1, 117.0, 116.9, 116.7, 99.2, 79.7, 79.4, 79.1, 78.9 57.0; HRMS (ESI): m/z calcd for C₁₂H₈FNO₂ [M+H]⁺ 218.0612; Found: 218.0614.

8-nitro-4-(prop-2-yn-1-yloxy)quinolin-2(1H)-one (19): Yellow amorphous solid, $R_f = 0.25$ (4:6, Ethylacetate:Hexane, v/v) ¹H NMR (500 MHz, CDCl₃): δ 8.52 (dd, J = 1.5 Hz, J = 8.5 Hz, 1H), 8.30 (dd, J = 1.5 Hz, J = 8.0 Hz, 1H), 7.30 (t, J = 8.5 Hz, 1H), 5.29 (s, 1H, H-3), 4.88 (d, J = 3.0 Hz, 2H), 2.67 (t, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 162.8, 161.1, 133.7, 131.2, 128.8, 120.9, 118.1, 99.1, 77.9, 75.8, 56.9; HRMS (ESI): *m/z* calcd for C₁₂H₈N₂O₄ [M+H]⁺ 245.0557; Found: 245.0566.

4-(prop-2-yn-1-yloxy)-8-(trifluoromethoxy)quinolin-2(1H)-one (20): Off white amorphous solid, $R_f = 0.26$ (4:6, Ethylacetate:Hexane, v/v) ¹H NMR (400 MHz, CDCl₃): δ 11.65 (s, 1H), 7.79 (dd, J = 0.8 Hz, J = 8.4 Hz,1H), 7.61 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 6.07 (s, 1H, H-3), 5.04 (d, J = 2.0 Hz, 2H), 3.78 (t, J = 2.4 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 160.7, 132.2, 123.9, 121.9, 121.8, 117.0, 99.7, 80.1, 78.1, 57.1, 49.04; HRMS (ESI): m/z calcd for C₁₃H₈F₃NO₃ [M+H]⁺ 284.0529; Found: 284.0548.

General Synthesis of Glucose and Galactose derived azido glycosides 23-24. To a 250 ml round bottom flask taken 10 gm (25.64 mmol) of 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose 21 in anhydrous dichloromethane under nitrogen atmosphere. Then added SnCl₄ 2.57 ml (22.05 mmol) dropwise at ice bath and stirred for half an hour followed by addition of TMSN₃ 3.80 ml (28.97mmol) at room temperature and stirred reaction mixture for 3-4 h. Completion of reaction was confirmed by TLC. After completion of reaction it was quenched with cold water and aq. solution of NaHCO₃ and extracted using dichloromethane (3 × 100 ml). The, organic layer washed by brine solution (3 × 50 ml), and dried over anhydrous Na₂SO₄ and evaporated on rotary evaporator to get crude product. Crude residue was purified by column chromatography and azido glucoside 23 was obtained as an off white solid in 92% isolated yield. Using similar reaction protocol azido galactoside 24 was prepared starting with 1,2,3,4,6-penta-*O*-acetyl- β -D-galactopyranose 22 (Scheme S1).

Scheme S1. Synthesis of Azido glycosides 23-24.

Spectroscopic data of azido glycosides 23-24.

1-azido-2,3,4.6-tetra-O-acetyl β-*D-glucose* (23): Off white amorphous solid, $R_f = 0.8$ (3:7, Ethylacetate Hexane, v/v), ¹H NMR (400 MHz, CDCl₃): δ 5.23 (t, J = 9.2 Hz, 1H), 5.12 (t, J = 9.6 Hz, 1H), 4.97 (t, J = 9.2 Hz, 1H), 4.66 (d, J = 8.8 Hz, 1H), 4.29 (dd, J = 4.8 Hz, J = 12.4 Hz, 1H), 4.18 (dd, J = 2.4 Hz, J = 12.4 Hz, 1H), 3.81 (ddd, J = 2.0 Hz, J = 6.8 Hz, J = 12.0 Hz, 1H), 2.11 (s, 3H, CH₃ of COCH₃), 2.09 (s, 3H, CH₃ of COCH₃), 2.04 (s, 3H, CH₃ of COCH₃), 2.02 (s, 3H, CH₃ of COCH₃); ¹³ C NMR (100 MHz, CDCl₃): δ 170.5, 170.0, 169.2, 169.1, 87.9, 74.0, 72.6, 70.6, 67.9, 61.6, 20.6, 20.52, 20.5; HRMS (ESI): *m*/*z* calcd for C₁₄H₁₉N₃O₉ [M+Na]⁺ 396.1014; Found: 396.1038.

1-azido-2,3,4.6-tetra-O-acetyl β-*D-galactose* (24): Off white amorphous solid, $R_f = 0.78$ (3:7, Ethylacetate:Hexane, v/v), ¹H NMR (400 MHz, CDCl₃): δ 5.42 (d, J = 2.8 Hz, 1H), 5.18-5.13 (m, 1H), 5.03 (dd, J = 3.2 Hz, J = 10.4 Hz, 1H), 4.59 (d, J = 8.8 Hz, 1H), 4.16 (dd, J = 4.4 Hz, J = 6.0 Hz, 1H), 4.10 (m, 1H), 4.01 (t, J = 6.4 Hz, 1H), 2.16 (s, 3H, CH₃ of COCH₃), 2.08 (s, 3H, CH₃ of COCH₃), 2.05 (s, 3H, CH₃ of COCH₃), 1.98 (s, 3H, CH₃ of COCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 170.1, 170.0, 169.4, 88.3, 72.8, 70.7, 68.0, 66.8, 61.2, 53.4, 20.69, 20.67, 20.6, 20.5; HRMS (ESI): m/z calcd for C₁₄H₁₉N₃O₉ [M+K]⁺412.0753; Found: 412.0778.

S22

S26

S27

Results of Cell Viability Assays

Figure S2. Cell viability assay of compounds 26, 28, 40 and 44 in HCT-116 and Huh-7.5 cell line (20 μ M concentration).

Figure S3. H2DCFDA Assay performed in HepG2 cells.

Figure S4. H2DCFDA Assay performed in HCT-116 cells.

Figure S5. H2DCFDA Assay performed in Huh-7.5 cells.