Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A dual functional fluorescence sensor for detection of Al^{3+} and Zn^{2+} in different solvent.

Yuankang Xu^a, Hanyu Wang^a, Jinyan Zhao^b, Xiaofeng Yang^a, Meishan Pei^a, Guangyou Zhang^a and Yanxia Zhang^{a,*}

^a School of chemistry and chemical engineering, University of Jinan, Jinan 250022, China, E-mail address: chm_zhangyx@ujn.edu.cn.

^b Jinan Technician college, China. E-mail address: zhao_jin_yan@126.com.

*Corresponding author: chm_zhangyx@ujn.edu.cn (Yanxia Zhang).

Fig. S2. ¹³C NMR spectrum of X.

Fig. S3. The FTIR spectra of X.

Fig. S4. ESI mass spectrum of X.

Fig. S5. Time course for the fluorescence response of **X** (1×10^{-5} M) at 472 nm upon the addition of Al³⁺ (10 equiv.) in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S6. Absorption spectra of **X** (1×10^{-5} M) upon the addition of various metal ions (10 equiv.) in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S7. Absorption titration spectra of **X** (1×10^{-5} M) upon the addition of Al³⁺ (0 - 15 equiv.) in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S8. Absorption spectra of **X** and **X**[Al³⁺] in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S9. Fluorescence intensity of **X** and its complexation with Al^{3+} in the presence of other metal ions (Ag⁺, Mg²⁺, Cu²⁺, Li⁺, K⁺, Na⁺, Ca²⁺, Fe³⁺, Ni²⁺, Zn²⁺, Mn²⁺, Cr³⁺, Hg²⁺, Co²⁺ and Cd²⁺) in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S10. Fluorescence intensity of X at 472 nm with the addition of Al^{3+} (0 - 1 equiv.)

Fig. S11. Benesi-Hilderbrand plot of X with Al^{3+} .

Fig. S12. The influence of pH value of solution on the fluorescence of X and $X[Al^{3+}]$ at the slits of excitation and emission were 10 nm and 10 nm, respectively.

Fig. S13. Absorption spectra of **X** (1×10^{-5} M) upon the addition of various metal ions (5 equiv.) in ethanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. 14. Absorption titration spectra of **X** (1×10^{-5} M) upon the addition of Zn²⁺ (0 - 5 equiv.) in ethanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S15. Absorption spectra of **X** and $\mathbf{X}[Zn^{2+}]$ in ethanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S16. Fluorescence intensity of **X** and its complexation with Zn^{2+} in the presence of other metal ions (Cd²⁺, Al³⁺, Ag⁺, Mg²⁺, Cu²⁺, Co²⁺, Fe³⁺, Ni²⁺, Li⁺, K⁺, Ca²⁺, Na⁺, Cr³⁺, Hg²⁺ and Mn²⁺) in ethanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S17. Fluorescence intensity of X at 484 nm with the addition of Zn^{2+} (0 - 1 × 10⁻⁶ M)

Fig. S18. Benesi-Hilderbrand plot of X with Zn²⁺.

Fig. S19. The influence of pH value of solution on the fluorescence of X and $X[Zn^{2+}]$ at the slit width value of 20 nm.

Fig. S20. Job's plot of **X** with Al^{3+} complexation in methanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S21. Job's plot of X with Zn^{2+} complexation in ethanol/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S22. ESI mass spectrum of complex X[Al³⁺].

Fig. S23. ESI mass spectrum of complex $X[Zn^{2+}]$.

Table S1. Determination of Al³⁺ concentrations in tap water samples

sample	Al ³⁺ added (M)	Al ³⁺ recovered (M)	Recovery (%)	RSD (%)
1	1.0×10^{-5}	$9.04 imes 10^{-6}$	90.4	0.57
2	5.0×10^{-5}	4.73×10^{-5}	94.7	1.70
3	1.0×10^{-4}	$9.97 imes 10^{-5}$	99.7	1.13

Table S2. Determination of Zn^{2+} concentrations in tap water samples

sample	Zn ²⁺ added (M)	Zn ²⁺ recovered (M)	Recovery (%)	RSD (%)
1	1.0 × 10 ⁻⁵	1.10 × 10 ⁻⁵	110.1	1.38
2	$2.0 imes 10^{-5}$	2.28×10^{-5}	114.3	0.64
3	3.0×10^{-5}	3.10×10^{-5}	103.4	0.46

Table S3. XYZ coordinate of the optimized structure of **X**.

Standard orientation:

Center	Atomic	Atomic	Co	pordinates (Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	5. 380763	-0. 299407	-1. 336343
2	6	0	6.022813	0.738092	-0.598627
3	6	0	3.635847	0.464107	0.024297
4	6	0	2.264502	-1.277847	0.066319
5	6	0	3. 189357	-1.511402	-0.969431
6	6	0	1.147241	-2.244796	0.500301
7	6	0	-0.829322	0.091960	0.994782
8	6	0	-2.051928	0.846892	0.440767
9	6	0	-2.018713	2.242837	0.321801
10	6	0	-3.241363	2.997710	-0.232207
11	6	0	-4.387182	2.288701	-0.617351
12	6	0	-4. 423671	0.754698	-0.486605
13	6	0	-3.311049	0.067764	0.017503
14	6	0	-3.347501	-1.466249	0.148205
15	6	0	-4. 493308	-2.175268	-0.236932
16	6	0	-5.715995	-1.420392	-0.790856
17	6	0	-5.682815	-0.024443	-0.909809
18	16	0	4.847619	1.692710	0.347532
19	7	0	3.905610	-0.261500	-1.193034
20	7	0	2.550310	0.042058	0.687144
21	7	0	0.251323	-1.883030	1.608170
22	7	0	-0.860050	-1.196613	1.104491
23	8	0	1.001230	-3.344653	-0.093468
24	8	0	-0.849519	2.966308	0.714828
25	1	0	5.904746	-1.029406	-1.917238
26	1	0	7.078873	0.910229	-0.596684
27	1	0	3.341390	-2.433687	-1.490172

28	1	0	-0.053182	-2.713148	2.075264
29	1	0	0.045522	0.633258	1.288943
30	1	0	-2.497971	-1.990739	0.533080
31	1	0	-4.518635	-3.241106	-0.146126
32	1	0	-6.590854	-1.961744	-1.084898
33	1	0	-6.532341	0.500049	-1.294682
34	1	0	-5.236691	2.813194	-1.002265
35	1	0	-3.216005	4.063545	-0.323061
36	1	0	-0.256844	3.048816	-0.035853

Standard orientation:

Center	Atomic	Atomic	Со	pordinates (A	Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	6. 589017	0. 303986	0. 181609
2	6	0	6.760004	-1.071839	0.539538
3	6	0	4.472762	-0.571591	-0.210221
4	6	0	3.132250	1.319098	-0.133185
5	6	0	4.491148	1.730106	-0.237834
6	6	0	1.831080	2.363416	-0.003442
7	6	0	-1.892358	0.984997	0.166953
8	6	0	-2.824243	-0. 414988	0.052073
9	6	0	-2.674665	-1.987812	-0.033015
10	6	0	-3.977018	-2.818086	-0.093574
11	6	0	-5.241048	-2.244113	-0.092297
12	6	0	-5.404898	-0.734156	-0.029890
13	6	0	-4.286821	0.103336	0.036552
14	6	0	-4.496902	1.630752	0.100378
15	6	0	-5.787321	2.174347	0.091251
16	6	0	-7.009162	1.246929	0.017515
17	6	0	-6.826067	-0.138105	-0.039996
18	16	0	5.344223	-2.062987	0.073173
19	7	0	5.326680	0.538073	-0.559693
20	7	0	3.225803	-0.173611	-0.157052
21	7	0	0.274645	2.303159	0.425731
22	7	0	-0.572352	1.128550	0.221386
23	8	0	2.168126	3.538710	-0.301190
24	8	0	-1.508522	-2.964108	-0.077125
25	1	0	7.287102	1.075966	0.429849
26	1	0	7.621831	-1.457303	1.043098
27	1	0	4.853351	2.727628	-0.101238
28	1	0	-0.176289	3.038714	-0.079855

29	1	0	-2.449368	1.897595	0.209438
30	1	0	-3.648460	2.280655	0.152071
31	1	0	-5.921947	3.234916	0.135617
32	1	0	-7.996615	1.658976	0.010215
33	1	0	-7.675714	-0.786473	-0.091176
34	1	0	-6.107688	-2.870129	-0.136321
35	1	0	-3.900770	-3.884362	-0.139870
36	13	0	0.647090	-1.256619	-0.074091

Table S5. XYZ coordinate of the optimized structure of $X[Zn^{2+}]$.

Standard orientation:

Center	Atomic	Atomic	Co	oordinates (Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	6. 532962	0. 437827	0. 188181
2	6	0	6.709804	-0.936416	0.549329
3	6	0	4. 420584	-0.447771	-0.202046
4	6	0	3.071918	1.437293	-0.129658
5	6	0	4. 429053	1.853913	-0.234984
6	6	0	1.766229	2.476288	-0.002595
7	6	0	-1.951267	1.082225	0.170241
8	6	0	-2.877083	-0.322027	0.058415
9	6	0	-2.720708	-1.894384	-0.023000
10	6	0	-4.019456	-2.730404	-0.081899
11	6	0	-5.285948	-2.161886	-0.082205
12	6	0	-5.456321	-0.652509	-0.023329
13	6	0	-4.341879	0.189948	0.041400
14	6	0	-4.558556	1.716588	0.101646
15	6	0	-5.851305	2.254591	0.091000
16	6	0	-7.069121	1.321745	0.019165
17	6	0	-6.880043	-0.062616	-0.035101
18	16	0	5.298408	-1.934736	0.084976
19	7	0	5.269785	0.664753	-0.553914
20	7	0	3.171910	-0.055049	-0.150050
21	7	0	0.209979	2.410314	0. 426403
22	7	0	-0.631904	1.231594	0.224607
23	8	0	2.098269	3.652333	-0.302996
24	8	0	-1.550357	-2.865742	-0.064614
25	1	0	7.227660	1.213383	0.434774
26	1	0	7.573178	-1.316993	1.053954
27	1	0	4.786923	2.853302	-0.100626

28	1	0	-0.244016	3.142746	-0.080976
29	1	0	-2.512215	1.992509	0.210501
30	1	0	-3.712935	2.370261	0.152005
31	1	0	-5.990512	3.314670	0.132884
32	1	0	-8.058340	1.729513	0.010713
33	1	0	-7.726876	-0.714758	-0.084951
34	1	0	-6.149873	-2.791732	-0.124954
35	1	0	-3.938601	-3.796445	-0.125711
36	30	0	0.597874	-1.148971	-0.065101