Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information for

Sandwich-type tetrakis(phthalocyaninato) europium-cadmium quadruple-decker: structure, spectroscopic, OFET and gas sensor

Guang Lu,^{*a,c}</sup> Xia Kong,^{<i>c*} Hailong Wang,^{*a*} Yuxiang Chen,^{*d*} Chuangyu Wei,^{*b*} Yanli Chen, ^{*b*}, * and</sup>

Jianzhuang Jiang^{a, b,}*

^a Beijing Key Laboratory for Science and Application of Functional Molecular and

Crystalline Materials, Department of Chemistry, University of Science and Technology

Beijing, Beijing 100083, China

^b School of Materials Science and Engineering, Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China

^c School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China

^d School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China.

Corresponding Author

*E-mail: jianzhuang@ustb.edu.cn (J. Jiang) and yanlichen@upc.edu.cn (Y. Chen).

Experimental Section

Measurements. Electronic absorption spectra were recorded with a Hitachi U-4100 spectrophotometer. ¹H NMR spectra were recorded on a Bruker DPX 400 spectrometer in CDCl₃. Spectra were referenced internally using the residual solvent resonance ($\delta = 7.26$ for ¹H NMR) relative to SiMe₄. MALDI-TOF mass spectra were taken on a Bruker BIFLEX III ultra-high-resolution. Elemental analyses were performed on an Elementar Vavio El III. Electrochemical measurement was carried out with a BAS CV-50W voltammetric analyzer. The cell comprised inlets for a glassy-carbocn-disk working electrode with a diameter of 2.0 mm in diameter and a silver-ware counter electrode. The reference electrode was Ag⁺/Ag (a solution of 0.01 M AgNO₃ and 0.1 M TBAP in acetonitrile), which was connected to the solution by a Luggin capillary whose tip was placed close to the working electrode. It was corrected for junction potentials by being referenced internally to the ferrocenium/ferrocene (Fc^+/Fc) couple $[E_{1/2}(Fc^+/Fc) = 0.501 \text{ V vs. SCE}]$. Typically, a 0.1 M solution of $[NBu_4][ClO_4]$ in CH₂Cl₂ containing 1 mM of sample was purged with nitrogen for 10 min, and then the voltammogram was recorded at ambient temperature. The scan rate was 20 mV s⁻¹ for the CV measurement. X-ray diffraction experiment was carried out on a Bruker AXS D8 ADVANCE X-ray diffractometer. AFM images were collected in air under ambient conditions using the tapping mode with a NanoscopeIII/Bioscope scanning probe microscope from Digital instruments. The sensor property was measured by Keysight 1912A under N_2 gas, and OFET property was measured by HP 4140B in the air.

Chemicals. Anhydrous 1,2,4-trichlorobenzene (TCB) and 1,8-diazabicyclo[5.4,0]undec-7-ene (DBU) were purchased from Aldrich. Dichloromethane for voltammetric studies was freshly distilled from CaH_2 under an atmosphere of nitrogen. Column chromatography was carried out on silica gel (Merck, Kieselgel 60, 70-230 mesh) with the indicated eluents. All other reagents and solvents were used as received. The

compounds of Eu(acac)₃ nH₂O and Eu[Pc(SC₆H₁₃)₈]₂ were prepared according to the literature methods.¹⁻²

Synthesis of $\{ [Pc(SC_6H_{13})_8] Eu[Pc(SC_6H_{13})_8] Cd[Pc(SC_6H_{13})_8] Eu[Pc(SC_6H_{13})_8] \}$ (1). In a Schlenk flask, the mixture of Eu[Pc(SC₆H₁₃)₈]₂ (91 mg, 0.03 mmol) and Cd(OAc)₂H₂O (7.7 mg, 0.03 mmol) in TCB (2 mL) was heated to reflux under nitrogen for 6 h, and then the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with $CHCl_3$ and *n*-hexane (1:1, v/v), then the solvent was removed under reduced pressure. Repeated chromatography followed by recrystallization from CHCl₃ and *n*-hexane gave pure compound as a dark powder. Yield: 80 mg (84 %). 1 H NMR (400 MHz, CDCl₃, δ): 10.02 (s, 16 H, Pc-α-H), 9.15 (s, 16 H, Por-α-H), 4.80 (m, 16 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 4.72 (m, 16 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 3.84 (m, 16 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 3.39 (m, 16 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 3.22 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 2.94 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 2.37 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 2.26 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 2.00 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₃), 1.75 (m, 32 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.38 (m, 64 H, -SCH₂CH₂CH₂CH₂CH₂CH₃), 1.65 (m, 48 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 0.85 (m, 48 H, -SCH₂CH₂CH₂CH₂CH₂CH₂CH₃), Figure S3 (Supporting Information). MALDI-TOF MS: an isotopic cluster peaking at m/z 6185, [M]⁺, 6185, Figure S2 (Supporting Information). Anal. Calc. Anal. Calc. For C₃₂₀H₄₄₈CdEu₂N₃₂S₃₂: C, 62.14%; H, 7.30%; N, 7.25%. Found: C, 61.92%; H, 7.30%; N, 7.28%.

Fig. S1. Experimental isotopic pattern for the molecular ion of compound **1** shown in the MALDI-TOF mass spectrum.

Fig. S2. ¹H NMR spectrum of compound **1** in CDCl₃.

Fig. S3. Thermogravimetric analysis of complex 1.

Fig. S4. Polarized UV–vis spectra for QLS film of 1.

Fig. S5. I-V curve of the QLS film of 1.

Table S1. Half-wave redox potentials (V *vs* SCE) in CH_2Cl_2 containing 0.1 mol dm⁻³ [Bu₄N][ClO₄] together with the HOMO and LUMO levels of **1**.

Compoun d	Oxd ₃ /V	Oxd ₂ /V	Oxd ₁ /V	Red ₁ /V	E _{HOMO} /eV ^[b]	E_{LUMO} / $eV^{[c]}$	$\Delta E^o_{1/2}/V^{[a]}$
(1)	1.00	0.65	0.37	-0.59	-4.81	-3.85	0.97

^[a] $\Delta E^{o}_{1/2} = Oxd_1 - Red_1$, *i.e.* the HOMO–LUMO gap of corresponding molecule; ^[b] calculated from empirical formula of HOMO = $-(Oxd_1 + 4.44 \text{ eV})$; ^[c] LUMO = $-(Red_1 + 4.44 \text{ eV})$.

Table S2. The orientation angle of the phthalocyanine ring determined from polarizedUV-vis absorbance of the films of of Compoud 1.

Compound	$A_{/\!/ 0}\circ$	$A_{\perp \ 0} ^{\circ}$	$D_0 ^\circ$	$A_{/\!/ 45^{\circ}}$	$A_{\perp \ 45^{\circ}}$	D_{45°	θ^{o}
1	0.490	0.498	0.984	0.713	0.548	1.301	32.8 °

OFET materials	$\mu_{e} \ (cm^{2} \ V^{-1} \ s^{-1})$	$\mu_h (cm^2 V^{-1} s^{-1})$	Ref.
diketopyrrolopyrrole	4.4×10 ⁻⁴	8.6×10 ⁻⁴	3
$Eu_{2}[Pc(OC_{8}H_{17})_{8}]_{2}[Pc(OCH_{2}CF_{3})_{8}]$	2.14×10 ⁻⁴	2.72×10 ⁻²	4
$Eu_{2}{Pc[(OC_{2}H_{4})_{3}OCH_{3}]_{8}}_{2}[Pc(OCH_{2}CF_{3})_{8}]$	5.83×10 ⁻⁴	1.3×10 ⁻²	4
DbT-TTAR/DTTQ-11	0.83	0.37	5
naphthalene diimide (NDI) -benzothiadiazole	2.4×10 ⁻³	0.258	6
diketopyrrolopyrrole	0.1	2×10 ⁻³	7
This work	5.6×10 ⁻³	1.2×10 ⁻³	

Table S3. Comparison between the present study and the literatures about OFET property.

Sensing materials	NO ₂ (ppm)	Operating temperature	Ref.
Cu/ graphene	1	room-temperature	8
$H_2[Pc(OCH_2(CF_2)_6CF_3)_4]$	0.1	room-temperature	9
silver-polypyrrole	5	room-temperature	10
TIPS-pentacene	0.25	room-temperature	11
LuPc ₂	0.75	room-temperature	12
This work	0.25	room-temperature	

Table S4. Comparison between the present study and the literatures about gas sensors for NO₂ detection.

References

- (1) Y. Zhang, W. Jiang, J. Jiang and Q. Xue, J. Porphyrins Phthalocyanines, 2007, 11, 100-108.
- (2) C. Huang, Y. Zhang, J. Sun, Y. Bian and D. P. Arnold. *J. Porphyrins Phthalocyanines* 2013, 17, 673-681.
- (3) J. Zhou, S. Bi, S. Yang, H. Zhou and Y. Zhang, *Phys. Chem. Chem. Phys.*, 2018, **20**, 1787-1793.
- (4) S. Liu, H. Wang, X. Wang, S. Li, H. Liu, Y. Chen and X. Li, *J. Mater. Chem. C*, 2019, 7, 424-433.
- (5) S. Vegiraju, C.-Y. Lin, P. Priyanka, D.-Y. Huang, X.-L. Luo, H.-C. Tsai, S.-H. Hong, C.-J. Yeh, W.-C. Lien, C.-L. Wang, S.-H. Tung, C.-L. Liu, M.-C. Chen, and A. Facchetti, *Adv. Funct. Mater.*, 2018, **28**, 1801025.
- (6) C. An, H. Makowska, B. Hu, R. Duan, W. Pisula, T. Marszalek and M. Baumgarten, *RSC Adv.*, 2018, **8**, 16464-16469.
- (7) K. Kim, J. Jeon, Y. H. Ha, H. Cha, C. E. Park, M. Kang, H. Jhon, S.-K. Kwon, Y.-H. Kim,T. K. An, *Org. Electron.*, 2018, **54**, 1-8.
- (8) Y. Seekaew. D, Phokharatkul. A. Wisitsoraat and C. Wongchoosuk, *Appl. Surf. Sci.*, 2017, 404, 357-363.
- (9) Q. Sun, W. Feng, P. Yang, G. You and Y. Chen, New J. Chem., 2018, 42, 6713-6718.
- (10) N. Karmakar, R. Fernandes, S. Jain, U. V. Patil, N. G. Shimpi, N. V. Bhat and D. C. Kothari, *Sens. Actuators B*, 2017, **242**, 118-126.
- (11) X. Zhuang, S. Han, B. Huai, W. Shi and J. Yu, Sens. Actuators B, 2019, 279, 238-244.
- (12) M. Debliquy, D. Lahem, A. Bueno-Martinez, C. Caucheteur, M. Bouvet, I. Recloux, J.-P.Raskin and M.-G. Olivier, *Sensors*, 2018, **18**, 740.