Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Oxidative Addition of Verdazyl Halogenides to Pd(PPh₃)₄

Pavel V. Petunin,^{ab} Darya E. Votkina,^a Marina E. Trusova,^a Tatyana V. Rybalova,^{cd} Evgeny V. Amosov,^c Mikhail N. Uvarov,^{de} Pavel S. Postnikov,^{*af} Maxim S. Kazantsev ^{cd} and Evgeny A. Mostovich^{**d}

Table of contents

Section S1. Additional experimental spectra	2
Section S2. Full results of oxidative addition reaction	12
Section S3. X-ray data	13
Section S4. ESR data	15
Section S5. Electrochemical properties	16
Section S6. NMR spectra	17
Fig. S33 ¹ H NMR spectrum (DMSO-d6) of 2-(3-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6d	17
Fig. S34 ¹³ C NMR spectrum (DMSO-d6) of 2-(3-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6d	18
Fig. S35 ¹ H NMR spectrum (DMSO-d6) of 2-(4-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6e.	19
Fig. S36 ¹³ C NMR spectrum (DMSO-d6) of 2-(4-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6e.	20
Fig. S37 ¹ H NMR spectrum (DMSO-d6) of 2-(4-bromophenyl)-α-chloroformyl-4-phenylhydrazone 6f.	21
Fig. S38 ¹³ C NMR spectrum (DMSO-d6) of 2-(4-bromophenyl)-α-chloroformyl-4-phenylhydrazone 6f	22
Fig. S39 ¹ H NMR spectrum (DMSO-d6) of 6-(3-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7d	23
Fig. S40 ¹³ C NMR spectrum (DMSO-d6) of 6-(3-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7d	24
Fig. S41 ¹ H NMR spectrum (DMSO-d6) of 6-(4-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7e	25
Fig. S42 ¹³ C NMR spectrum (DMSO-d6) of 6-(4-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7e	26
Fig. S43 ¹ H NMR spectrum (DMSO-d6) of 6-(4-bromophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7f	27
Fig. S44 ¹³ C NMR spectrum (DMSO-d6) of 6-(4-bromophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7f	28
References	29

a Tomsk Polytechnic University, Tomsk 634050, Russia. E-mail: postnikov@tpu.ru

b Siberian State Medical University, 2, Moskovskiy trakt, Tomsk 634050, Russia.

c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia.

d Novosibirsk State University, Novosibirsk 630090, Russia. E-mail: <u>chemmea@gmail.com</u>

e V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.

f University of Chemistry and Technology, Prague 16628, Czech Republic.

Fig. S3. UV-Vis spectrum of 1c in CH_2Cl_2

Fig. S4. Cyclic voltammogram of 1d in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Fig. S5. ESR spectra of 1d (black – experimental, red – simulated) in deoxygenated toluene solution.

Fig. S6. UV-Vis spectrum of 1d in CH₂Cl₂

Fig. S7. Cyclic voltammogram of 1e in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Fig S8. ESR spectra of 1e (black - experimental, red - simulated) in deoxygenated toluene solution.

Fig. S9. UV-Vis spectrum of 1e in CH₂Cl₂

Fig. S13. Cyclic voltammogram of 2a in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Fig. S14. ESR spectra of 2a (black – experimental, red – simulated) in deoxygenated toluene solution.

Fig. S15. UV-Vis spectrum of 2a in CH_2Cl_2

Fig. S16. Cyclic voltammogram of 2b in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Fig. S17. ESR spectra of 2b (black – experimental, red – simulated) in deoxygenated toluene solution.

Fig. S18. UV-Vis spectrum of 2b in CH_2Cl_2

Fig. S19. Cyclic voltammogram of 2c in CH_2Cl_2 (100 mV/s with 0.1 M Bu_4NPF_6 electrolyte).

Fig. S20. ESR spectra of 2c (black – experimental, red – simulated) in deoxygenated toluene solution.

Fig. S22. Cyclic voltammogram of 2d in CH_2Cl_2 (100 mV/s with 0.1 M Bu_4NPF_6 electrolyte).

Fig. S23. ESR spectra of 2d (black – experimental, red – simulated) in deoxygenated toluene solution.

Fig. S24. UV-Vis spectrum of 2d in CH_2Cl_2

Fig. S25. Cyclic voltammogram of 2e in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Fig. S26. ESR spectra of 2e (black - experimental, red - simulated) in deoxygenated toluene solution.

Fig. S27. UV-Vis spectrum of 2e in CH₂Cl₂

Fig. S29. ESR spectra of 2f (black - experimental, red - simulated) in deoxygenated toluene solution.

Section S2. Full results of oxidative addition reaction

Scheme S1. Synthesis of palladium-verdazyls 2a-2f from verdazyl radicals 1a-1f.^a

Entry	Reagent/Product	Solvent	[Pd]	Temperature (°C)	Time (h)	Yield (%) ^b	Conversion(%)
1	1a/2a	THF	$Pd(PPh_3)_4$	65	1	91	>95
2	1b/2b	THF	$Pd(PPh_3)_4$	r.t.	4	85	>95
3	1b/2b	THF	$Pd(PPh_3)_4$	65	1	90	>95
4	1b/2b	toluene	$Pd(PPh_3)_4$	r.t.	4	83	89
5	1b/2b	toluene	$Pd(PPh_3)_4$	65	1	89	>95
6	1c/2c	THF	$Pd(PPh_3)_4$	65	0.7	89	>95
7	1d/2d	THF	$Pd(PPh_3)_4$	65	0.5	89	>95
8	1e/2e	THF	$Pd(PPh_3)_4$	r.t.	2	86	>95
9	1e/2e	THF	$Pd(PPh_3)_4$	65	0.5	92	>95
10	1e/2e	toluene	$Pd(PPh_3)_4$	r.t.	2	84	90
11	1e/2e	toluene	$Pd(PPh_3)_4$	65	0.5	90	>95
12	1f/2f	THF	$Pd(PPh_3)_4$	65	6	5	25
13	1f/2f	THF	$Pd(PPh_3)_4$	65	12	25	45
14	1f/2f	THF	$Pd(PPh_3)_4$	65	24(48)	39(39)	59(61)
15	1f/2f	toluene	$Pd(PPh_3)_4$	65	24(48)	37(37)	54(55)
16 ^c	1b/2b	THF	$Pd(PPh_3)_4$	65	1	traces	>95
17 ^d	1b/2b	THF	$Pd(PPh_3)_2Cl_2$	65	2	91% of 3b	>95
18^{d}	1e/2e	THF	$Pd(PPh_3)_2Cl_2$	65	2	88% of 3e	>95
19	1b/2b	CH ₃ CN	$Pd(CH_3CN)_2Cl_2$	r.t.	4	decomp.	>95
$20^{\rm e}$	1b with Ph-C≡CH/2b	THF	$Pd(PPh_3)_2Cl_2$	65	2	48% of 2b; 40% of 3b	>95
21 ^e	1e with Ph-C≡CH/2e	THF	$Pd(PPh_3)_2Cl_2$	65	2	53% of 2e; 34% of 3e	>95

^a Optimized conditions: iodine-containing verdazyl (0.1 mmol) and Pd(PPh₃)₄ (0.1 mmol) were mixed in deoxygenated THF (5 ml); reaction progress was monitored by TLC; ^b isolated yields; ^c NEt₃ was added; ^d verdazyl-PPh₃⁺ **3** was observed as product according to HRMS analysis; ^e 1 eq. of phenylacetylene was added

Section S3. X-ray data

Fig. S31 Molecular structure of 2d (left), 2e (center), 2f (right). Thermal ellipsoids drawn at 30% probability. The minor part of disordered phenyl cycles in 2e is omitted for clarity

Structural comparison of 2d, 2e, 2f with previously reported diamagnetic palladium intermediates iodo-phenyl-bis(triphenylphosphine)-palladium(II)¹ and bromo-(4-ethylphenyl)-bis(triphenylphosphine)-palladium(II)² shows differences in bond lengths no more than 0.02 Å and very similar bond angles (Table S1). Thus, conjugation with paramagnetic center does not make any sufficient impact on the structure of oxidative addition intermediates.

	2d	2e	Iodo-phenyl-bis(triphenylphosphine)-palladium(II) ¹	2f	bromo-(4-ethylphenyl)-bis(triphenylphosphine)-palladium(II) ²
Bond lengths, Å					
Pd – Hal	2.6905(7)	2.6976(5)	2.7010(9)	2.5132(5)	2.5215(4)
Pd – P1	2.339(2)	2.321(1)	2.342(1)	2.3387(8)	2.3225(7)
Pd - P2	2.336(2)	2.3225(9)	3.337(1)	2.3445(9)	2.3346(7)
Pd – C	2.012(5)	2.016(3)	2.029(4)	2.023(3)	2.028(3)
Angles, degrees					
C - Pd - Hal	172.8(2)	172.51(9)	171.4(1)	169.9(1)	178.80
P1 – Pd – P2	173.62(5)	178.17(3)	173.81(4)	173.00(3)	178.72

Table S1. Selected bond lengths and angles of complexes 2d, 2e, 2f and known palladium intermediates.

		Compound	
	2d	2e	2f
Empirical formula	$C_{56}H_{44}IN_4OP_2Pd\cdot solvent$	$C_{56}H_{44}IN_4OP_2Pd^{\cdot1}/_2[CH_2Cl_2]$	C ₅₆ H ₄₄ BrN ₄ OP ₂ Pd·0.84[CH ₂ Cl ₂]
Formula weight	1084.19	1126.65	1108.79
Temperature K	296(2)	296(2)	296(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
Unit cell dimensions a Å	9.2359(6)	12.4819(5)	10.7741(3)
b Å	11.991(1)	15.2493(6)	12.8315(4)
<i>c</i> Å	23.858(2)	15.4903(6)	19.8161(6)
α	85.044(4)	65.585(2)	92.147(2)
β °	81.344(3)	82.390(2)	98.758(2)
γ	75.570(4)	73.138(2)	109.794(2)
Volume Å ³	2526.4(3)	2569.07(18)	2535.9(1)
Ζ	2	2	2
Density (calcd.) g.cm ⁻³	1.425	1.456	1.452
Absorption coefficient mm ⁻¹	1.084	1.119	1.350
F(000)	1090	1132	1124.8
Crystal size mm ³	$0.45\times0.14\times0.02$	$0.34 \times 0.17 \times 0.04$	$0.33 \times 0.32 \times 0.20$
Θ range for data collection $^\circ$	2.30 - 25.98	2.22 - 28.81	2.30 - 26.74
Index ranges	$-10 \le h \le 10, -14 \le k \le 14,$	$-16 \le h \le 16, -20 \le k \le 20,$	$-13 \le h \le 13, -16 \le k \le 16,$
	$-28 \le l \le 28$	$-20 \le l \le 20$	$-25 \le l \le 25$
Reflections collected	38930	80953	45234
Independent reflections [Rint]	8857 [0.0416]	13396 [0.0468]	10747 [0.0309]
Reflections observed $(I > 2\sigma(I))$	7200	8983	8481
Completeness to θ %	99.4	99.9	99.6
Data / restraints / parameters	8857 / 0 / 586	13396 / 20 / 646	10747 /2 / 614
Goodness-of-fit on F ²	1.090	1.029	1.008
Final R indices $I > 2\sigma(I)$, $R1 / wR2$	0.0488 / 0.1271	0.0406 / 0.0879	0.0403 / 0.1073
Final R indices (all data), R1 /	0.0634 / 0.1324	0.0790 / 0.1050	0.0588 / 0.1243
Largest diff. peak / hole e.Å $^{-3}$	0.788 / -1.061	0.936 / -0.801	1.203 / -0.688

Table S2. Crystal data and structure refinement details for compounds 2d, 2e, 2f.

Section S4. ESR data

Spectra of meta- and para-substituted radicals were similar for substances: **1a**, **1b** and **1c**; **1d**, **1e** and **1f**; **2a** and **2b**; **2d**, **2e** and **2f**. The values of g-factors and constants of hyperfine interaction between the electron spin and nitrogen nuclear which has been obtained after the numerical simulation of the ESR spectra are shown in Table S3.

	1a	2a	1b	2b	1c	2c	1d	2d	1e	2e	1f	2f
g-factor	2.0034	2.0033	2.0033	2.0035	2.0038	2.0038	2.0039	2.0038	2.0039	2.0038	2.0039	2.0038
a _{N1} , G	5.41	5.25	5.48	5.25	5.36	7.06	4.59	4.42	4.59	4.36	4.60	4.35
a _{N2} , G	5.41	5.72	5.48	5.75	5.35	5.40	6.10	6.52	6.15	6.40	6.13	6.40
a _{N4} , G	5.41	5.72	5.48	5.75	5.35	5.40	6.10	6.52	6.15	6.40	6.13	6.40
a _{N5} , G	5.41	5.25	5.48	5.25	5.36	5.40	4.59	4.42	4.59	4.36	4.60	4.35
ILB, G ^a	2.23	2.30	2.09	2.11	2.24	2.31	2.20	1.73	1.89	1.73	1.93	1.67

Table S3. ESR parameters of 1a-1f and 2a-2f

a Value of individual line broadening which was used for simulation of ESR spectra in Winsim2002 software

Section S5. Electrochemical properties

Fig. S32 Cyclic voltammograms of 1b (red) vs. 2b (blue), 1e (green) vs. 2e (black) and 1f (orange) vs. 2f (violet) in CH₂Cl₂ (100 mV/s with 0.1 M Bu₄NPF₆ electrolyte).

Compound	$E_{Red}^{1/2}$, V	$E_{Ox}^{1/2}$, V	Compound	$E_{Red}^{1/2}$, V	$E_{0x1}^{1/2}, V$	$E_{Ox2}^{1/2}, \mathrm{V}$			
1a	-1.31	-0.16	2a	-1.48	-0.26	1.03 ^b			
1b	-1.29	-0.16	2b	-1.47	-0.29	1.02 ^b			
1c	-1.23	-0.16	2c	-1.47	-0.33	1.03 ^b			
1d	-1.01	0.51	2d	-1.17	0.45	0.69 ^b			
1e	-1.01	0.50	2e	-1.12	0.42	0.78^{b}			
1 f	-0.98	0.50	2f	-1.15	0.42	-			
^a Potentials are reported in V vs Fc/Fc ⁺ . ^b Irreversible process, cathodic peak potentials are given.									

Table S4. Electrochemical properties of starting radicals 1a-1f and Pd-derivatives 2a-2f^a

Fig. S33 ¹H NMR spectrum (DMSO-d6) of 2-(3-iodophenyl)-α-chloroformyl-4-phenylhydrazone **6d.**

Fig. S34 ¹³C NMR spectrum (DMSO-d6) of 2-(3-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6d.

Fig. S35 ¹H NMR spectrum (DMSO-d6) of 2-(4-iodophenyl)-α-chloroformyl-4-phenylhydrazone **6e.**

Fig. S36 ¹³C NMR spectrum (DMSO-d6) of 2-(4-iodophenyl)-α-chloroformyl-4-phenylhydrazone 6e.

Fig. S37 ¹H NMR spectrum (DMSO-d6) of 2-(4-bromophenyl)-α-chloroformyl-4-phenylhydrazone 6f.

Fig. S38 ¹³C NMR spectrum (DMSO-d6) of 2-(4-bromophenyl)-α-chloroformyl-4-phenylhydrazone **6f.**

Fig. S39 ¹H NMR spectrum (DMSO-d6) of 6-(3-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7d.

Fig. S40 ¹³C NMR spectrum (DMSO-d6) of 6-(3-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7d.

Fig. S41 ¹H NMR spectrum (DMSO-d6) of 6-(4-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7e.

Fig. S42 ¹³C NMR spectrum (DMSO-d6) of 6-(4-iodophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7e.

Fig. S43 ¹H NMR spectrum (DMSO-d6) of 6-(4-bromophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7f.

Fig. S44 ¹³C NMR spectrum (DMSO-d6) of 6-(4-bromophenyl)-2,4-diphenyl-1,2,4,5-tetrazinan-3-one 7f

References

- 1) J. P. Flemming, M. C. Pilon, O. Y. Borbulevitch, M. Y. Antipin and V. V. Grushin, *Inorganica Chim. Acta*, 1998, **280**, 87–98.
- S. Zhang, Z. Zhang, H. Fu, X. Li, H. Zhan and Y. Cheng, J. Organomet. Chem., 2016, 825– 826, 100–113.