Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Facile synthesis of oligo anilines as permanent hair dyes: How chemical modifications impart colour and avoid toxicity

Gopalakrishnan Venkatesan^a, Yuri Dancik^{b,c}, Arup Sinha^d, Mei Bigliardi ^{b,e}, Ramasamy Srinivas^b, Thomas Dawson^b, Suresh Valiyaveettil^{*,d}, Paul Bigliardi^{*,b,e}, and Giorgia Pastorin^{*,a}

^a.Department of Pharmacy, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 2, Singapore 117543. ^b Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648. ^c Le Studium Loire Valley Institute of Advanced Studies, Orléans, France and Université François-Rabelais de Tours, Faculté de Pharmacie, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France. ^d Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 2, Singapore 117543. ^e Department of Dermatology, Division of Dermato-Allergy, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA.

* Corresponding authors. Contact email: phapg@nus.edu.sg; pbigliar@umn.edu

Supplementary Information

Table of Contents

	Page	Figures
Spectrum of compound 1 (PPD 1)	3-4	S1(A)-S1(C)
Spectrum of compound 6 (PPD 2)	5-6	S2(A)-S2(C)
Spectrum of compound 7 (PPD 3)	7-8	S3(A)-S3(C)
Spectrum of compound 8 (PPD 4)	9-10	S4(A)-S4(C)
Spectrum of compound 9 (PPD 5)	11-12	S5(A)-S5(C)
Spectrum of compound 12 (PPD 6)	13-14	S6(A)-S6(C)
Spectrum of compound 13 (PPD 7)	15-16	S7(A)-S7(C)
Spectrum of compound 15 (PPD 8)	17-18	S8(A)-S8(C)
Spectrum of compound 17 (PPD 9)	19-20	S9(A)-S9(C)
Spectrum of compound 20 (PPD 10)	21-22	S10(A)-S10(C)
Spectrum of compound 21 (PPD 11)	23-24	S11(A)-S11(C)
Spectrum of compound 28 (PPD 12)	25-26	S12(A)-S12(C)
Spectrum of compound 29 (PPD 13)	27-28	S13(A)-S13(C)
Spectrum of Bandrowski's base	29-30	S14(A)-S14(C)
Hair Dyeing	31	S15
Nuance stability analysis of the PPD-1 upon		
repeated washing over 4 weeks.	32	S16

Figure S1 (A). ¹HNMR spectrum of compound 1 (PPD 1).

		Mass	Spect	um	Sm	nartF	orm	ula Report		
Analysis Info								Acquisition Date	5/24/2	018 3:00:07 PM
Analysis Name	D:\Data\Che	m\2018 Sa	amples\201	805\05	24-1\	PPD-1.d	Í.			
Method	YCH-50-500	.m						Operator	defaul	t user
Sample Name	PPD-1							Instrument / Ser#	micrO	TOF-Q II 10269
Comment	Dr Wu Jie									
Acquisition Pa	rameter									
Source Type	ESI		Ion Polar	ty		Positive		Set Nebulizer		2.0 Bar
Focus	Not active		Set Capil	lary		4500 V		Set Dry Heat	er	200 °C
Scan Begin	50 m/z		Set End F	Plate Of	fset	-500 V		Set Dry Gas		6.0 l/min
Scan End	700 m/z		Set Collis	ion Cell	RF	100.0 V	'pp	Set Divert Va	lve	Waste
vleas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ C	onf N-	Rule			
200.1185 1	C 12 H 14 N 3	200.1182	-1.5	7.5	even		ok			

Figure S1 (C). HRMS spectrum of compound 1 (PPD 1).

Figure S2 (A). ¹HNMR spectrum of compound 6 (PPD 2).

Figure S2 (B). ¹³CNMR spectrum of compound 6 (PPD 2).

		M	ass S	pectrur	n Si	martFo	rmu	la Report		
Analysis In	fo							Acquisition Date	5/24/2018 4:4	3:15 PM
Analysis Na	me	D:\Data\Chem\2	018 Samp	les\201805	0524-	NPPD-14.d				
Method		YCH-50-500.m						Operator	default user	
Sample Nan	ne	PPD-14						Instrument / Ser#	micrOTOF-Q	10269
Comment		Dr Wu Jie								
Acquisition	P	arameter								
Source Type		ESI	1	on Polarity		Positive		Set Nebulizer	2.0 B	ar
Focus		Not active	:	Set Capillary		4500 V		Set Dry Heate	er 200 °	С
Scan Begin		50 m/z	1	Set End Plate	Offset	-500 V		Set Dry Gas	6.0 l/	min
Scan End		700 m/z		Set Collision (Cell RF	100.0 Vp	р	Set Divert Va	lve Wast	e
leas. m/z	#	Formula	m/z	err [ppm]	rdb	e ⁻ Conf	N-Rule	9		
411.1931	1	C 26 H 25 N 3 O 2	411.1941	2.4	16.0	odd	0	k		

Figure S2(C). HRMS spectrum of compound 6 (PPD 2).

Figure S3 (A). ¹HNMR spectrum of compound 7 (PPD 3).

Figure S3 (B). ¹³CNMR spectrum of compound 7 (PPD 3).

		M	ass S	pectrur	n Si	mart⊦c	ormu	lla Report		
Analysis Info	,							Acquisition Date	5/24/2018 4:2	25:57 PM
Analysis Nam	ie	D:\Data\Chem\	2018 Samp	les\201805	0524-	1\PPD-11.d	l)	•		
Method		YCH-50-500.m	0.					Operator	default user	
Sample Name	e	PPD-11						Instrument / Ser#	micrOTOF-Q	II 10269
Comment		Dr Wu Jie								
Acquisition I	Par	ameter								
Source Type		ESI	l.	on Polarity		Positive		Set Nebulizer	2.0 8	Bar
Focus		Not active	5	Set Capillary		4500 V		Set Dry Heat	er 200	°C
Scan Begin		50 m/z	5	Set End Plate	Offset	-500 V		Set Dry Gas	6.01	min
Scan End		700 m/z	5	Set Collision (Cell RF	100.0 Vp	p	Set Divert Va	lve Was	te
Meas. m/z #	I	Formula	m/z	err [ppm]	rdb	e ⁻ Conf	N-Rule	e		
469.1747 1	(26 H 23 N 5 O 4	469.1745	-0.5	18.0	odd	0	k		

Figure S3(C). HRMS spectrum of compound 7 (PPD 3).

Figure S4 (A). ¹HNMR spectrum of compound 8 (PPD 4).

Figure S4 (B). ¹³CNMR spectrum of compound 8 (PPD 4).

	M	ass Sp	ectrur	n Sr	martFo	mula	Report		
Analysis Info						Acc	uisition Date	5/24/201	8 4:33:11 PM
Analysis Name	D:\Data\Chem\	2018 Sample	s\201805	0524-1	I\PPD-12.d	,			
Method	YCH-50-500.m					Op	erator	default u	ser
Sample Name	PPD-12					Inst	trument / Ser#	micrOTC	F-Q II 10269
Comment	Dr Wu Jie								
Acquisition Pa	arameter								
Source Type	ESI	lon	Polarity		Positive		Set Nebulizer		2.0 Bar
Focus	Not active	Se	t Capillary		4500 V		Set Dry Heate	er	200 °C
Scan Begin	50 m/z	Se	t End Plate	Offset	-500 V		Set Dry Gas		6.0 l/min
Scan End	700 m/z	Se	t Collision (Cell RF	100.0 Vpp		Set Divert Va	lve	Waste
Meas. m/z #	Formula	m/z	[mqq] rre	rdb	e ⁻ Conf I	N-Rule			
439.2253 1	C 28 H 29 N 3 O 2	439.2254	0.3	16.0	odd	ok			

Figure S4(C). HRMS spectrum of compound 8 (PPD 4).

Figure S5 (A) ¹HNMR spectrum of compound 9 (PPD 5).

Figure S5 (B). ¹³CNMR spectrum of compound 9 (PPD 5).

		Mass	Spectr	um	Smai	rtForm	ula Report		
Analysis Info							Acquisition Date	5/24/2018 4	:38:43 PM
Analysis Name	D:\Data\Che	m\2018 Sa	mples\201	805\05	24-1\PPD	0-13.d			
Method	YCH-50-500	.m					Operator	default user	
Sample Name	PPD-13						Instrument / Ser#	micrOTOF-0	Q II 10269
Comment	Dr Wu Jie								
Acquisition Pa	arameter								
Source Type	ESI		Ion Polari	ty	Po	sitive	Set Nebulizer	2.0	Bar
Focus	Not active		Set Capill	ary	45	00 V	Set Dry Heate	er 200	0°C
Scan Begin	50 m/z		Set End F	late Of	fset -50	00 V	Set Dry Gas	6.0) I/min
Scan End	700 m/z		Set Collis	ion Cell	RF 10	0.0 Vpp	Set Divert Va	lve Wa	iste
Meas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ Cont	N-Rule			
407.2363 1	C 28 H 29 N 3	407.2356	-1.7	16.0	odd	ok			

Figure S5(C). HRMS spectrum of compound 9 (PPD 5).

Figure S6 (A). ¹HNMR spectrum of compound 12 (PPD 6).

Figure S6 (B). ¹³C NMR spectrum of compound 12 (PPD 6).

	Ν	lass S	Spectru	m S	martF	orm	ula Report		
Analysis Info							Acquisition Date	5/24/20	18 3:28:21 PM
Analysis Name	D:\Data\Chen	n\2018 San	nples\20180	5\0524-	1\PPD-4.	d			
Method	YCH-50-500.	n				-	Operator	default i	user
Sample Name	PPD-4						Instrument / Ser#	micrOT	OF-Q II 10269
Comment	Dr Wu Jie								
Acquisition Pa	rameter								
Source Type	ESI		Ion Polarity		Positiv	e	Set Nebulizer		2.0 Bar
Focus	Not active		Set Capillan	1	4500 \	1	Set Dry Heate	r	200 °C
Scan Begin	50 m/z		Set End Pla	e Offset	-500 V	'	Set Drv Gas		6.0 l/min
Scan End	700 m/z		Set Collision	Cell RF	100.0	Vpp	Set Divert Val	ve	Waste
Meas.m/z #	Formula	m/z	err [ppm]	rdb	∋ Conf	N-Rule			
209.1650 1	C 12 H 21 N 2 O	209.1648	-0.7	3.5	even	ok			

Figure S6(C). HRMS spectrum of compound 12 (PPD 6).

Figure S7 (A). ¹HNMR spectrum of compound 13 (PPD 7).

Figure S7 (B). ¹³C NMR spectrum of compound 13 (PPD 7).

		Ν	Mass S	Spectru	m S	Sn	nartF	orm	ula Report		
Analysis Inf	io								Acquisition Date	5/24/2	018 3:23:57 PM
Analysis Nar	ne	D:\Data\Chen	n\2018 San	nples\20180	5\052	4-1	PPD-3.	d			
Method		YCH-50-500.	m	•					Operator	defau	lt user
Sample Nam	ne	PPD-3							Instrument / Ser#	micrO	TOF-Q II 10269
Comment		Dr Wu Jie									
Acquisition	Pa	arameter									
Source Type		ESI		Ion Polarity			Positiv	/e	Set Nebulizer	· ·	2.0 Bar
Focus		Not active		Set Capillar	Y		4500	V	Set Dry Heate	er	200 °C
Scan Begin		50 m/z		Set End Pla	te Offs	ət	-500 V	1	Set Dry Gas		6.0 l/min
Scan End		700 m/z		Set Collision	n Cell F	۲F	100.0	Vpp	Set Divert Va	ve	Waste
Aleas.m/z #	¥	Formula	m/z	err [ppm]	rdb	e	Conf	N-Rule			
237.1958	1	C 14 H 25 N 2 O	237.1961	1.6	3.5	ev	ren	ok			

Figure S7(C). HRMS spectrum of compound 13 (PPD 7).

Figure S8 (A). ¹HNMR spectrum of compound 15 (PPD 8).

Figure S8 (B). ¹³CNMR spectrum of compound 15 (PPD 8).

Mass Spectrum SmartFormula Report

Analysis Info							Acquisition Date	5/24/20)18 3:32:00 PM	
Analysis Name Method Sample Name Comment	lethod YCH-50-500.m ample Name PPD-5 comment Dr Wu Jie coulisition Parameter ource Type ESI			5\0524	l-1\PPD-5.c	1	Operator Instrument / Ser#	default micrOT	user OF-Q II 10269	
Acquisition Pa	arameter									_
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 700 m/z		lon Polarity Set Capillan Set End Pla Set Collision	/ te Offse i Cell R	Positive 4500 V et -500 V F 100.0 V	e /pp	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	er Ive	2.0 Bar 200 °C 6.0 l/min Waste	
Meas. m/z # 300.2073 1	Formula C 18 H 26 N 3 O	m/z 300.2070	err [ppm] -0.9	rdb 7.5	e Conf even	N-Rule ok				

Figure S8(C). HRMS spectrum of compound 15 (PPD 8).

Figure S9 (A).¹HNMR spectrum of compound 17 (PPD 9).

Figure S9 (B).¹³C NMR spectrum of compound 17 (PPD 9).

17

Mass Spectrum SmartFormula Report

Analysis Info	D:\Data\Chem	02018 San	∟16 d	Acquisition Date	6/21/2018	6:20:50 PM		
Method Sample Name Comment	YCH-50-500.n PPD-16 Dr Wu Jie	n	ipies 201000.00	21416	-10.4	Operator Instrument / Ser#	default us micrOTOI	er Q II 10269
Acquisition P	arameter							
Source Type Focus Scan Begin Scan End	APCI Not active 50 m/z 600 m/z		lon Polarity Set Capillary Set End Plate Of Set Collision Cell	fset - RF	Positive 1500 V 500 V 100.0 Vpp	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	er 2	3.0 Bar 200 °C 4.0 l/min Waste
Meas. m/z # 293.2587 1	Formula C 18 H 33 N 2 O	m/z 293.2587	err [ppm] rdt 0.1 3.5	e C even	onf N-Rule ok			

Figure S9(C). HRMS spectrum of compound 17 (PPD 9).

Figure S10 (A).¹HNMR spectrum of compound 20 (PPD 10).

Figure S10 (B).¹³C NMR spectrum of compound 20 (PPD 10).

20

		Mass	Spectr	um	Sn	nart	Form	ula Report		
Analysis Info								Acquisition Date	5/24	/2018 3:12:47 PM
Analysis Name	D:\Data\Che	em\2018 Sa	amples\201	805\05	24-1	PPD-2	2.d			
Method	YCH-50-50).m						Operator	defa	ult user
Sample Name	PPD-2							Instrument / Ser#	micr	OTOF-Q II 10269
Comment	Dr Wu Jie									
Acquisition Pa	rameter									
Source Type	ESI		Ion Polari	ly .		Posit	ive	Set Nebulize	er	2.0 Bar
Focus	Not active	e	Set Capill	arv		4500	V	Set Dry Hea	ter	200 °C
Scan Begin	50 m/z		Set End F	late Of	fset	-500	v	Set Dry Gas		6.0 l/min
Scan End	700 m/z		Set Collisi	on Cel	RF	100.0	Vpp	Set Divert V	alve	Waste
vleas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ (Conf	N-Rule			
290.1518 1	C 18 H 18 N 4	290.1526	2.9	12.0	odd		ok			

Figure S10(C). HRMS spectrum of compound 20 (PPD 10).

Figure S11 (A). ¹HNMR spectrum of compound 21 (PPD 11).

Figure S11 (B). ¹³C NMR spectrum of compound 21(PPD 11).

		Mass	Spectr	um	Sn	nart	Form	ula Report			
Analysis Info								Acquisition Date	5/24/2	2018 3:58:0	7 PM
Analysis Name	D:\Data\Che	m\2018 Sa	mples\201	805\05	24-1	PPD-	B.d				
Method	YCH-50-500	m					0.000.0	Operator	defau	lt user	
Sample Name	PPD-8							Instrument / Ser#	micrO	TOF-Q II 1	0269
Comment	Dr Wu Jie										
Acquisition Pa	rameter										
Source Type	ESI		Ion Polari	ty		Posi	tive	Set Nebulizer		2.0 Bar	
Focus	Not active		Set Capill	ary		4500	v	Set Dry Heat	er	200 °C	
Scan Begin	50 m/z		Set End F	late Of	fset	-500	v	Set Dry Gas		6.0 l/min	
Scan End	700 m/z		Set Collis	on Cell	RF	100.	0 Vpp	Set Divert Va	lve	Waste	
Meas. m/z #	Formula	m/z	err [ppm]	rdb	e_ (Conf	N-Rule				
381.1952 1	C 24 H 23 N 5	381.1948	1.2	16.0	odd		ok				

Figure S11(C). HRMS spectrum of compound 21 (PPD 11).

Figure S12 (A). ¹HNMR spectrum of compound 28 (PPD 12).

Figure S12 (B).¹³C NMR spectrum of compound 28 (PPD 12).

Mass Spectrum SmartFormula Report									
Analysis Info							Acquisition Date	5/24	/2018 4:17:00 PM
Analysis Name	D:\Data\Chei	m\2018 Sa	mples\201	805\05	24-1\P	PD-9.d			
Method	YCH-50-500.	.m	9997.• 9999945 53689488				Operator	defa	ult user
Sample Name	PPD-9						Instrument / Ser#	micr	OTOF-Q II 10269
Comment	Dr Wu Jie								
Acquisition Pa	rameter								
Source Type	ESI		Ion Polari	ty		Positive	Set Nebulize)r	2.0 Bar
Focus	Not active		Set Capill	ary		4500 V	Set Dry Hea	ter	200 °C
Scan Begin	50 m/z		Set End F	late Of	set	-500 V	Set Dry Gas		6.0 l/min
Scan End	700 m/z		Set Collis	on Cell	RF	100.0 Vpp	Set Divert V	alve	Waste
vleas.m/z #	Formula	m/z	err (ppm)	rdb	e C	onf N-Ru	le		
303.1731 1	C 20 H 21 N 3	303.1730	-0.4	12.0	odd		ok		

Figure S12(C). HRMS spectrum of compound 28(PPD 12).

Figure S13 (A). ¹HNMR spectrum of compound 29 (PPD 13).

Figure S13 (B).¹³C NMR spectrum of compound 29 (PPD 13).

Н

29

			Mass	Spectr	um	Sma	tForm	ula Report	
Analysis Info				Acquisition Date	5/24/2018 4:21:55 PM				
Analysis N Method Sample Na Comment	ame	 D:\Data\Che YCH-50-500 PPD-10 Dr Wu Jie 	em\2018 Sa).m	amples\201	805\05	24-1\PP[0-10.d	Operator Instrument / Ser#	default user micrOTOF-Q II 10269
Acquisitio	n P	arameter							
Source Type	э	ESI		Ion Polar	ty	Po	sitive	Set Nebulize	2.0 Bar
Focus		Not active		Set Capill	ary	45	00 V	Set Dry Heat	er 200 °C
Scan Begin		50 m/z		Set End F	Plate Of	fset -54	V 00	Set Dry Gas	6.0 l/min
Scan End		700 m/z		Set Collis	ion Cell	RF 10	0.0 Vpp	Set Divert Va	ive Waste
Neas. m/z	#	Formula	m/z	err (ppm)	rdb	e ⁻ Cont	N-Rule		
394.2157	1	C 26 H 26 N 4	394.2152	-1.3	16.0	odd	ok		

Figure S13(C). HRMS spectrum of compound 29(PPD 13).

Figure S14 (A). ¹HNMR spectrum of Bandrowski's base.

Figure S14 (B). ¹³CNMR of spectrum of Bandrowski's base.

Mass Spectrum SmartFormula Report Acquisition Date 5/24/2018 4:59:38 PM D:\Data\Chem\2018 Samples\201805\0524-1\BB.d

Method Sample Name	YCH-50-500.m BB			Operator de Instrument / Ser# mi	fault user crOTOF-Q II 10269
Comment	Dr Wu Jie				
Acquisition Pa	rameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	700 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste
Meas. m/z #	Formula	m/z err [ppm] rdb e	Conf N-Rule		

319.1663 1 C 18 H 19 N 6 319.1666 0.8 12.5 even ok

Analysis Info

Analysis Name

Figure S14(C). HRMS spectrum of Bandrowski's base.

1. Hair Dyeing

Figure S15. Hair colors obtained from PPD derivatives 1, 6, 7, 8, 10, PTD and ME-PPD with the oxidant H_2O_2 (formulation B) and the coupler resorcinol (formulation C)

Brown

Black

Brown

Black

Figure S16: Nuance stability analysis of the PPD-1 upon repeated washing over 4 weeks.

Table S2. Hair color measurements following dyeing with PPD derivatives in formulations A(no oxidant), B (with oxidant H_2O_2) and C (with coupling agent resorcinol)

Derivatives		L*	L_0	<i>a*</i>	a_0	b *	$\boldsymbol{b_0}$	ΔE	ΔH
	Natural hair		9		0		1		
PPD	А	57		0		30		56.1	29
	В	9		1		1		1	0
	С	14		1		3		5.5	2.2
PPD 1	А	9		1		1		1	1
	В	9		1		1		1	1
	С	9		1		1		1	1
PPD 6	А	16		7		0		9.9	7.1
	В	9		1		1		1	1
	С	13		6		2		7.3	6.1
PPD 7	А	17		13		2		15.3	13.0
	В	9		1		1		1	1
	С	9		1		1		1	1
PPD 8	А	9		0		1		0	0
	В	9		1		1		1	1
	С	11		1		2		2.4	1.4
PPD 10	А	22		4		1		13.6	4
	В	35		5		0		26.5	5.1
	С	49		8		8		41.4	10.6
PTD	А	58		0		30		56.9	29.0
	В	14		1		3		5.4	2.2
	С	9		1		1		1	0
ME-PPD	A	58		0		30		56.9	29.0
	В	15		1		3		6.3	2.2
	С	9		1		1		1	0

Derivatives	Week 1	ΔE	ΔH
PPD	А	56.1	29
	В	1	0
	С	5.5	2.2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	Α	9.9	7.1
	В	1	1
	C	7.3	6.1
PPD 7	A	15.3	13.0
	В	1	l
	<u> </u>	1	<u> </u>
PPD 8	A	0	0
	B	1	
	<u> </u>	2.4	1.4
PPD 10	A	13.0	4
	Б С	20.5	3.1 10.6
DTD	<u> </u>	56.0	20.0
TID	R	54	29.0
	D C	1	0
ME-PPD	<u> </u>	56.9	29.0
ME ITD	B	63	2.2
	Č	1	0
Derivatives	Week 3	ΛE	ΛН
Derivatives PPD	Week 3 A	Δ <u>E</u> 56.1	<u>ΔΗ</u> 29
Derivatives PPD	Week 3 A B	ΔΕ 56.1 1	<u>AH</u> 29 0
Derivatives PPD	A B C	ΔE 56.1 1 5.5	<u>AH</u> 29 0 2.2
PPD 1	A B C A	ΔΕ 56.1 1 5.5 1	ΔΗ 29 0 2.2 1
PPD PPD 1	Week 3 A B C A B	<u>ΔΕ</u> 56.1 1 5.5 1 1	ΔH 29 0 2.2 1 1
PPD PPD 1	Week 3 A B C A B C	<u>ΔΕ</u> 56.1 1 5.5 1 1 1	ΔH 29 0 2.2 1 1 1 1
PPD 1 PPD 6	Week 3 A B C A B C A	<u>ΔΕ</u> 56.1 1 5.5 1 1 1 9.9	ΔH 29 0 2.2 1 1 1 7.1
PPD 1 PPD 6	Week 3 A B C A B C A B	<u>ΛΕ</u> 56.1 1 5.5 1 1 1 9.9 1	ΔH 29 0 2.2 1 1 1 1 7.1 1
PPD 1 PPD 6	Week 3 A B C A B C A B C	<u>ΛΕ</u> 56.1 1 5.5 1 1 1 9.9 1 7.3	ΔH 29 0 2.2 1 1 7.1 1 6.1
PPD 1 PPD 6 PPD 7	Week 3 A B C A B C A B C A	$ \begin{array}{r} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ $	XH 29 0 2.2 1 1 1 7.1 1 6.1 13.0
PPD 1 PPD 6 PPD 7	Week 3 A B C A B C A B C A B B C	<u>ΛΕ</u> 56.1 1 5.5 1 1 1 9.9 1 7.3 15.3 1	ΔH 29 0 2.2 1 1 1 7.1 1 6.1 13.0 1 1
PPD 1 PPD 6 PPD 7 PPD 0	Week 3 A B C A B C A B C A B C C	<u>ΛΕ</u> 56.1 1 5.5 1 1 1 9.9 1 7.3 15.3 1 1	ΔH 29 0 2.2 1 1 1 7.1 1 6.1 13.0 1 1
PPD 1 PPD 6 PPD 7 PPD 8	Week 3 A B C A B C A B C A B C A A B C	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ 29 \\ 0 \\ 2.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 6.1 \\ 13.0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 8	Week 3 A B C A B C A B C A B C A B C A B C	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ 29 \\ 0 \\ 2.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 6.1 \\ 13.0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 1$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 8 PPD 10	Week 3 A B C A B C A B C A B C A B C	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 12.6 \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ 29 \\ 0 \\ 2.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 7.1 \\ 1 \\ 6.1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1.4 \\ 4 \end{array}$
DerivativesPPDPPD 1PPD 6PPD 7PPD 8PPD 10	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A A A B C A A B C A A B C A A B C A A A B C A A A B B C A A A A	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 6.1 \\ 1 \\ 1 \\ 3.0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1.4 \\ 4 \\ 5 \\ 1 \end{array}$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 8 PPD 10	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ 29 \\ 0 \\ 2.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ \hline 1 \\ 6.1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1.4 \\ 4 \\ 5.1 \\ 10 \\ 6 \end{array}$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 8 PPD 10 PTD	Week 3 A B C A B C A B C A B C A B C A B C A B C A A B C A A B C A A A B C A A B C A A A B C A A B C A A B C A A A B C A A A B C A A B C A A A B C A A B C A A A B C A A A B C A A A B C A A A A	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ 56.9 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 7 PPD 8 PPD 10 PTD	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A A B B C A A B C A A B B C A A B C A A B A B	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ 56.9 \\ 5.4 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 7 PPD 8 PPD 10 PTD	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A A B B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B A A B C A A B B C A A B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C C C A A B B C C A A B B C C C A A B B C C C A A B B C C C A A A B B C C C A A B B C C C A A A B B C C C A A B B C C C A A A A	$\begin{array}{c c} \underline{AE} \\ \hline 56.1 \\ 1 \\ 5.5 \\ \hline 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ \hline 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ \hline 13.6 \\ 26.5 \\ 41.4 \\ \hline 56.9 \\ 5.4 \\ 1 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$
DerivativesPPDPPD 1PPD 6PPD 7PPD 7PPD 8PPD 10PTDME-PPD	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A A B C A A B C A A B C A A B C A A B C A A A B C A A B C A A A B C A A B C A A B C A A A B C A A B C A A B C A A A B C A A B C A A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A A B C A A B C A A B C A A B C A A B C A A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B C A A B A A B C A A B C A A B C A A B C A A B C A A B C A A A B C A A B C A A A B C A A A B C A A A B C A A A B C A A A B C A A A B C A A A B C A A A B C A A A B C C A A A B C C A A A B C C A A A A	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ 56.9 \\ 5.4 \\ 1 \\ 56.9 \\ 50.9$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 7 PPD 8 PPD 10 PTD ME-PPD	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A A B B C A A B C A A B B C A A B C A A B B C A A B B C A A B B C A A B B C A A B B C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A A B B C C A A A B B C C A A B A B	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ 56.9 \\ 5.4 \\ 1 \\ 56.9 \\ 6.3 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$
Derivatives PPD PPD 1 PPD 6 PPD 7 PPD 8 PPD 10 PTD ME-PPD	Week 3 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A B B C C A A A B B C C A A B B C C C A A B B C C C A A A B B C C C A A B B C C C A A B B C C C A A B B C C C A A A B C C C A A A B B C C C A A A A	$\begin{array}{c c} \underline{AE} \\ 56.1 \\ 1 \\ 5.5 \\ 1 \\ 1 \\ 1 \\ 9.9 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 7.3 \\ 15.3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2.4 \\ 13.6 \\ 26.5 \\ 41.4 \\ 56.9 \\ 5.4 \\ 1 \\ 56.9 \\ 6.3 \\ 1 \\ \end{array}$	$\begin{array}{c} \underline{\lambda H} \\ \underline{29} \\ 0 \\ \underline{2.2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1$

Table S3. Stability study analysis of Hair dyes on hair.

Derivatives	Week 2	ΔE	ΔH
PPD	А	56.1	29
	В	1	0
	С	5.5	2.2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	А	9.9	7.1
	В	1	1
	С	7.3	6.1
PPD 7	А	15.3	13.0
	В	1	1
	С	1	1
PPD 8	А	0	0
	В	1	1
	С	2.4	1.4
PPD 10	А	13.6	4
	В	26.5	5.1
	С	41.4	10.6
PTD	А	56.9	29.0
	В	5.4	2.2
	С	1	0
ME-PPD	А	56.9	29.0
	В	6.3	2.2
	С	1	0

Derivatives	Week 4	ΔE	ΔH
PPD	А	56.1	29
	В	1	0
	С	5.5	2.2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	А	9.9	7.1
	В	1	1
	С	7.3	6.1
PPD 7	А	15.3	13.0
	В	1	1
	С	1	1
PPD 8	А	0	0
	В	1	1
	С	2.4	1.4
PPD 10	А	13.6	4
	В	26.5	5.1
	С	41.4	10.6
PTD	А	56.9	29.0
	В	5.4	2.2
	С	1	0
ME-PPD	А	56.9	29.0
	В	6.3	2.2
	С	1	0

Derivatives	Month 1	ΔE	ΔH
PPD	А	56.1	29
	В	1	0
	С	5.5	2.2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	А	9.9	7.1
	В	1	1
	С	7.3	6.1
PPD 7	А	15.3	13.0
	В	1	1
	С	1	1
PPD 8	А	0	0
	В	1	1
	С	2.4	1.4
PPD 10	А	13.6	4
	В	26.5	5.1
	С	41.4	10.6
PTD	А	56.9	29.0
	В	5.4	2.2
	С	1	0
ME-PPD	А	56.9	29.0
	В	6.3	2.2
	С	1	0

Derivatives	Month 2	ΔE	ΔH
PPD	A	55.2	28
	В	1	0
	С	5.2	2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	А	9.2	7
	В	1	1
	С	6.8	6
PPD 7	А	14.8	12.5
	В	1	1
	С	1	1
PPD 8	А	0	0
	В	1	1
	С	2.2	1.4
PPD 10	А	13.3	3.5
	В	26.1	5
	С	41.0	10
PTD	А	56.9	29.0
	В	5.4	2.2
	С	1	0
ME-PPD	Α	56.9	29.0
	В	6.3	2.2
	С	1	0

Derivatives	Month 3	ΔE	ΔH	Derivatives
PPD	Α	55.2	28	PPD
	В	1	0	
	С	5.2	2	
PPD 1	Α	1	1	PPD 1
	В	1	1	
	С	1	1	
PPD 6	Α	9.2	7	PPD 6
	В	1	1	
	С	6.8	6	
PPD 7	Α	14.8	12.5	PPD 7
	В	1	1	
	С	1	1	
PPD 8	Α	0	0	PPD 8
	В	1	1	
	С	2.2	1.4	
PPD 10	Α	13.3	3.5	PPD 10
	В	26.1	5	
	С	41.0	10	
PTD	Α	56.9	29.0	PTD
	В	5.4	2.2	
	С	1	0	
ME-PPD	Α	56.9	29.0	ME-PPD
	В	6.3	2.2	
	С	1	0	

Derivatives	Month 6	ΔE	ΔH
PPD	А	55.2	28
	В	1	0
	С	5.2	2
PPD 1	А	1	1
	В	1	1
	С	1	1
PPD 6	А	9.2	7
	В	1	1
	С	6.8	6
PPD 7	А	14.8	12.5
	В	1	1
	С	1	1
PPD 8	А	0	0
	В	1	1
	С	2.2	1.4
PPD 10	А	13.3	3.5
	В	26.1	5
	С	41.0	10
PTD	А	56.9	29.0
	В	5.4	2.2
	С	1	0
ME-PPD	А	56.9	29.0
	В	6.3	2.2
	С	1	0