Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Coll immobilized on aminated magnetic metal-organic framework catalyzed

C-N and C-S bond forming reactions: A journey for the mild and efficient

synthesis of Arylamines and Arylsulfides

Arezou Mohammadinezhad and Batool Akhlaghinia*

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

Experimental

General

The purity determinations of the products and the progress of the reactions were accomplished by TLC on silica gel polygram STL G/UV 254 plates and GC-FID (Agilent 6890, Santa Clara, USA) device. Elemental analysis was performed using a Thermo Finnigan Flash EA 1112 Series instrument. X-ray powder diffraction (XRD) was performed on a PANalytical Company X'Pert Pro MPD diffractometer with Cu K_a radiation ($\lambda = 0.154$ nm) radiation. BET surface area and pore size distribution were measured on a Belsorp mini II system at -196° C using N₂ as the adsorbate. Transmission electron microscopy (TEM) was performed with a Leo 912 AB (120 kV) microscope (Zeiss, Germany). FE-SEM images were recorded using a TESCAN, Model: MIRA3 scanning electron microscope operating at an acceleration voltage of 30.0 kV (manufactured by the Czech Republic). Elemental compositions were determined with an SC7620 energy-dispersive X-ray analysis (EDX) and EDX-mapping presenting a 133 eV resolution at 20 kV. Thermogravimetric analyses (TGA) were carried out using a SDT Q600 V20.9 Build 20 in the temperature range of 25–950 °C at a heating rate of 10°C min⁻¹, under air atmosphere. X-ray photoelectron spectroscopy (XPS) was performed using the Thermo Scientific, ESCALAB 250 Xi Mg X-ray resource. The magnetic property of catalyst was measured using a vibrating sample magnetometer (VSM, Magnetic Danesh Pajoh Inst). The melting points of the products were determined with an Electrothermal Type 9100 melting point apparatus. The FT-IR spectra were recorded on an Avatar 370 FT-IR Therma Nicolet spectrometer. The NMR spectra were provided by Brucker Avance 300 and 400 MHz instruments in CDCl₃ or DMSO in the presence of tetramethylsilane as the internal standard and the coupling constants (J values) are given in Hz. Mass spectra were recorded with a CH7A

Varianmat Bremem instrument at 70 eV electron impact ionization, in m/z (rel%). All yields refer to the isolated products after purification by thin layer or column chromatography.

Fig. S1. XRD patterns of NH₂-MIL 53(Al)(I) (a), Fe₃O₄ MNPs (b), Fe₃O₄@AMCA-MIL53 (Al)
NPs (III)(c), Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs(VI) (d), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (e) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (f).

Table S1. Specific surface area (S_{BET}), pore volume and mean pore diameter of NH₂-MIL 53(Al) (I)(a), Fe₃O₄@AMCA-MIL53 (Al) NPs(III) (b), Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs (VI)(c), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (d) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (e).

Samples	${ m S}_{ m BET}$ $({ m m}^2~{ m g}^{-1})$	Total pore volume (cm ³ g ⁻¹)	Mean pore diameter (nm)
NH ₂ -MIL 53(Al)(I)	82.95	0.48	23
Fe ₃ O ₄ @AMCA-MIL53 (Al) NPs(III)	99.51	0.26	10
Fe ₃ O ₄ @AMCA-MIL53 (Al)-NH ₂ -Co ^{II} NPs(VI)	69.27	0.20	11
$7^{th}\ reused\ Fe_3O_4@\ AMCA-MIL53(Al)-NH_2-Co^{II}\ NPs(VI)$ a	49.5	0.20	17
$7^{th}\ reused\ Fe_3O_4@\ AMCA-MIL53(Al)-NH_2-Co^{II}\ NPs(\mathbf{VI})$ b	48	0.20	17

^a The 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs(VI) from the C-S cross coupling reaction. ^b The 7th

reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs(VI) from the C-N cross coupling reaction.

Fig. S2. The nitrogen adsorption-desorption isotherms of NH₂-MIL53(Al)(**I**) (a), Fe₃O₄@AMCA-MIL53(Al) NPs(**III**) (b), Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs (**VI**)(c), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (**VI**) from the C-S cross coupling reaction (d) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (**VI**) from the C-N cross coupling reaction (e).

Fig. S3. TEM images of the fresh Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs (VI) (a and b) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (c) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (d).

Fig. S4. Particle size distribution histogram of the fresh Fe_3O_4 @AMCA-MIL53 (Al)-NH₂-Co^{II} NPs (**VI**) (a), the 7th reused Fe_3O_4 @ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (**VI**) from the C-N cross coupling reaction (b) and the 7th reused Fe_3O_4 @ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (**VI**) from the

C-S cross coupling reaction (c).

Fig. S5. FE-SEM images of Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs(VI) (a-c), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (d) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (e).

Fig. S6. EDX spectrum of Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs (VI) (a), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (b) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (c).

Fig. S7. EDX-mapping of Fe₃O₄@AMCA-MIL53 (Al)-NH₂-Co^{II} NPs(VI).

SamplesWeight loss (%)Organic grafted segments		Elemental analysis (%)		
		(mmol g ⁻¹)		
			С	Ν
NH ₂ -MIL53(Al)(I)	78	-	36	4.5
AMCA-MIL53(Al)(II)	88	0.571	60	5
Fe ₃ O ₄ NPs	4.5	-	-	-
Fe ₃ O ₄ @AMCA-MIL53(Al) NPs(III)	14	0.27	3.9	1
Fe ₃ O ₄ @AMCA-MIL53(Al)-Ethephon(IV)	20	0.42 ^a	5.5	1
Fe ₃ O ₄ @AMCA-MIL53(Al)-NH ₂ -Co ^{II} NPs(VI)	23	0.41 ^b	6	2.3

Table S2. Thermogravimetric analysis (TGA) and elemental analysis (EA) results.

Fig. S8. TGA thermograms of NH₂-MIL53(Al)(I) (a), AMCA-MIL53(Al)(II) (b), Fe₃O₄ NPs (c), Fe₃O₄@AMCA-MIL53(Al)(III) NPs (d), Fe₃O₄@AMCA-MIL53(Al)-Ethephon(IV) (e) and Fe₃O₄@AMCA-MIL53(Al)-NH₂-Co^{II} NPs(VI) (f) and the 7th reused Fe₃O₄@AMCA-MIL53(Al)-NH₂-Co^{II} NPs(VI) from the C-N cross coupling reaction (g).

Fig. S9. XPS spectra (a) and XPS elemental survey (b) of Fe_3O_4 @ AMCA-MIL53(Al)-NH₂-Co^{II}

NPs (VI).

Fig. S10. Magnetization curves of Fe₃O₄@AMCA-MIL53 (Al) NPs (III)(a), Fe₃O₄@AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) (b), the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-N cross coupling reaction (c) and the 7th reused Fe₃O₄@ AMCA-MIL53(Al)-NH₂-Co^{II} NPs (VI) from the C-S cross coupling reaction (d).

Fig. S11. UV-vis. DRS spectra of cobalt(II) chloride (a) and Fe₃O₄@AMCA-MIL53(Al)-NH₂-

Co^{II} NPs(VI) (b).

Fig. S12. C-N and C-S cross coupling reactions in the presence of the reused Fe₃O₄@AMCA-

 $MIL53(A1)-NH_2-Co^{II} NPs(VI).$

Entry	Catalyst (Fe ₃ O ₄ @AMCA-	TON ^a	TOF (h ⁻¹) ^a	TON ^b	TOF ^b
	MIL53(Al)-NH ₂ -Co ^{II} NPs)				
1	First	70.37	12.79	117.28	26.06
2	Second	70.37	12.79	117.28	26.06
3	Third	70.37	12.79	117.28	26.06
4	Fourth	68.88	12.52	112.34	24.96
5	Fifth	67.4	12.25	112.34	24.96
6	Sixth	65.92	11.98	108.64	24.14
7	Seventh	64.4	11.7	104.93	23.31
7	Seventh	64.4	11.7	104.93	23.31

Table S3. Comparison of turnover number (TON) and turnover frequency (TOF) values for the fresh and reused nanostructured catalyst in the C-N and C-S cross coupling reactions.

^a C-N cross coupling reaction. ^b C-S cross coupling reaction.

Diphenylamine (1a)

(0.165 g, 95%). Colorless solid; mp: 54-55 °C (Lit¹. 53-54 °C). FT-IR (KBr): vmax/cm⁻¹ 3383 (N-H), 3084, 3040 (C-H, aromatic), 1596, 1494 (C=C, aromatic), 1172 (C-N). ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.26 – 7.21 (m, 4H, ArH), 7.06 –7.03 (m, 4H, ArH), 6.93– 6.90 (m, 2H, ArH), 6.88 (brs, 1H, NH). ¹³C NMR (75 MHz, CDCl₃): δ[ppm] = 143.3, 129.6, 121.3, 118.0. m/z 169 (M⁺, 32 %), 168 (M-1, 100%), 140 (C₁₀H₆N, 8%), 77 (C₆H₅, 50%), 65 (C₅H₅, 32%), 51 (C₄H₃, 48%).

Figure 1: FT-IR (KBr) of Diphenylamine (1a)

Figure 2: ¹H NMR (300 MHz, CDCl₃) of Diphenylamine (1a)

Figure 3: ¹³C NMR (75 MHz, CDCl₃) of Diphenylamine (1a)

Figure 4: Mass spectrum of Diphenylamine (1a)

4-(Phenylamino) benzonitrile (2a)

(0.184 g, 95%). White solid; mp 97-98 °C (Lit². 134-135 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.46 (d, *J* = 8.4 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.18 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 147.9, 139.9, 133.7, 129.6, 123.9, 121.1, 119.9, 114.8, 101.3 ppm.

Figure 5: ¹H NMR (400 MHz, CDCl₃) of 4-(Phenylamino) benzonitrile (2a)

Figure 6: ¹³C NMR (100 MHz, CDCl₃) of 4-(Phenylamino) benzonitrile (2a)

4-Bromo-*N*-phenylaniline (4a)

(0.172 g, 70%). White solid; mp 81-83 °C (Lit³. 84-86 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.36-7.26 (m, 4H), 7.07-6.93 (m, 5H), 5.71 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 142.3, 132.1, 129.4, 121.6, 118.9, 118.2, 112.6.

Figure 7: ¹H NMR (400 MHz, CDCl₃) of 4-Bromo-*N*-phenylaniline (4a)

Figure 8: ¹³C NMR (100 MHz, CDCl₃) of 4-Bromo-*N*-phenylaniline (4a)

N-phenyl-3-iodoaniline (6a)

(0.176 g, 60%). Light yellow oil. ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.41-7.23 (m, 4H), 7.10-6.94 (m, 5H), 5.67 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 145.1, 142.2, 131.1, 129.8, 129.7, 125.9, 122.3, 119.1, 116.5, 95.2.

Figure 9: ¹H NMR (300 MHz, CDCl₃) of *N*-phenyl-3-iodoaniline (6a)

Figure 10: ¹³C NMR (75 MHz, CDCl₃) of *N*-phenyl-3-iodoaniline (6a)

4-Chloro-*N*-phenylaniline (7a)

(0.182 g, 90%). White solid; mp 65-67 °C (Lit⁴. 66-67 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.29 (d, *J* = 7.6 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 7.7 Hz,2H), 7.00-6.94 (m, 3H), 5,67 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 143.09, 142.30, 129.91, 129.72, 125.91, 121.95, 119.24, 118.53.

Figure 11: ¹H NMR (400 MHz, CDCl₃) of 4-Chloro-*N*-phenylaniline (7a)

Figure 12: ¹³C NMR (100 MHz, CDCl₃) of 4-Chloro-*N*-phenylaniline (7a)

4-Nitro-*N*-phenylaniline (8a)

(0.203 g, 95%). Yellow solid; mp 132-133 °C (Lit⁴. 133-134 °C). ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 8.12 (d, *J* = 9.2 Hz, 2H, ArH), 7.40 (t, *J* = 7.6 Hz, 2H, ArH), 7.24 – 7.14 (m, 3H, ArH), 6.95 (d, *J* = 9.2 Hz, 2H, ArH), 6.27 (brs, 1H, NH); ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 150.4, 139.8, 139.7, 129.9, 126.4, 124.8, 122.1, 113.8.

Figure 13: ¹H NMR (300 MHz, CDCl₃) of 4-Nitro-*N*-phenylaniline (8a)

Figure 14: ¹³C NMR (75 MHz, CDCl₃) of 4-Nitro-*N*-phenylaniline (8a)

4-Methoxy-*N*-phenylaniline (10a)

(0.119 g, 60%). White solid; mp 104-106°C (Lit². 105-107 °C); ¹H NMR (400 MHz, CDCl₃) : δ [ppm] = 7.23 (t, *J* = 7.6 Hz, 2H), 7.09 (d, *J* = 5.6 Hz, 2H), 6.93-6.86 (m, 5H), 5.57 (bs, 1H), 3.81(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 155.2, 144.9, 135.5, 129.2, 122.1, 119.5, 115.5, 114.5, 55.5 ppm.

Figure 15: ¹H NMR (400 MHz, CDCl₃) of 4-Methoxy-*N*-phenylaniline (10a)

Figure 16: ¹³C NMR (100 MHz, CDCl₃) of 4-Methoxy-*N*-phenylaniline (10a)

4-Methyl-*N*-phenylaniline (11a)

(0.137 g, 75%). White solid; mp 83-85 °C (Lit². 86-87 °C). ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.25 – 7.19 (m, 2H, ArH), 7.11 – 7.06 (m, 2H, ArH), 7.03 – 6.97 (m, 4H, ArH), 6.91 – 6.84 (m, 1H, ArH), 5.65 (brs, 1H, NH), 2.32 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 144.1, 140.5, 131.1, 130.1, 129.5, 120.5, 119.1, 117.1, 21.2.

Figure 17: ¹H NMR (300 MHz, CDCl₃) of 4-Methyl-*N*-phenylaniline (11a)

Figure 18: ¹³C NMR (75 MHz, CDCl₃) of 4-Methyl-*N*-phenylaniline (11a)

N-phenylpyridin-2-amine (12a)

(0.17 g, 45%). White solid; mp 105-108 °C (Lit². 106-108 °C). ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 8.21 (d, *J* =3.5 Hz, 1H, ArH), 7.53 – 7.45 (m, 1H, ArH), 7.33 (d, *J* =4.3 Hz, 4H, ArH), 7.06 (dd, *J* =8.7 Hz, 4.4, 1H, ArH), = 6.88 (dd, *J* =8.4 Hz, 0.8 Hz, 1H, ArH), 6.75 - 6.71 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 156.2, 148.5, 140.7, 137.9, 129.5, 123.0, 120.6, 115.2, 108.4.

Figure 19: ¹H NMR (300 MHz, CDCl₃) of *N*-phenylpyridin-2-amine (12a)

Figure 20: ¹³C NMR (75 MHz, CDCl₃) of *N*-phenylpyridin-2-amine (12a)

N-benzylaniline (13a)

(0.164 g, 90%). Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.41 – 7.27 (m, 5H, ArH), 7.22 – 7.15 (m, 2H, ArH), 6.77 – 6.70 (m, 1H, ArH), 6.68 – 6.63 (m, 2H, ArH), 4.35 (s, 2H, PhCH₂), 4.09 (brs, 1H, NH) ppm; ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 148.4, 139.7, 129.5, 128.9, 127.8, 127.5, 117.8, 113.2, 48.7.

Figure 21: ¹H NMR (300 MHz, CDCl₃) of *N*-benzylaniline (13a)

Figure 22: ¹³C NMR (75 MHz, CDCl₃) of *N*-benzylaniline (13a)

N-butylaniline (16a)

(0.082 g, 55%). Yellow oil; 1HNMR (400 MHz, CDCl₃): δ [ppm] = 7.20 (t, *J* = 7.6 Hz, 2H), 6.72 (t, *J* = 7.2 Hz, 1H), 6.63 (d, *J* = 7.6 Hz, 2H), 3.62 (bs, 1H), 3.13 (t, *J* = 7.2 Hz, 2H), 1.67-1.59 (m, 2H), 1.50-1.41 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 148.4, 129.2, 117.0, 112.6, 43.6, 31.6, 20.3, 13.9.

Figure 23: ¹H NMR (400 MHz, CDCl₃) of *N*-butylaniline (16a)

Figure 24: ¹³C NMR (100 MHz, CDCl₃) of *N*-butylaniline (16a)

2-Nitro-*N*-phenylaniline (19a)

(0.096 g, 75 %). Red-brown solid; mp 71-72 °C (Lit⁵. 72-74 °C). ¹H NMR (400 MHz, DMSO*d*₆): δ [ppm] = 9.38 (s, 1H, NH), 8.11 (dd, *J* = 1.6 Hz, *J* = 8.5 Hz, 1H, PhH), 7.42-7.40 (m, 1H, PhH), 7.34- 7.32 (m, 2H, PhH), 7.34-7.31 (m, 2H, PhH), 7.22-7.18 (m, 2H, PhH), 6.89-6.85 (m, 1H, PhH). ¹³C NMR (100 MHz, DMSO-*d*₆): 142.4, 139.6, 136.4, 133.9, 129.9, 126.7, 125.3, 124.1, 118.4, 117.1.

Figure 25: ¹H NMR (400 MHz, DMSO- d_6) of 2-Nitro-*N*-phenylaniline (19a)

Figure 26: ¹³C NMR (100 MHz, DMSO- *d*₆) of 2-Nitro-*N*-phenylaniline (19a)

4-Methyl-*N*-(4-nitrophenyl) aniline (21a)

(0.114 g, 50%). Orange solid; mp 137 – 138 °C (Lit⁶. 138 – 139 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 8.09 (d, *J* = 9.2 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 9.2 Hz, 2H), 6.35 (s, 1H), 2.36(s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 151.36, 139.64, 137.13, 135.19, 130.70, 126.73, 123.06, 113.60, 21.38.

Figure 27: ¹H NMR (400 MHz, CDCl₃) of 4-Methyl-*N*-(4-nitrophenyl) aniline (21a)

Figure 28: ¹³C NMR (100 MHz, CDCl₃) of 4-Methyl-*N*-(4-nitrophenyl) aniline (21a)

3-(Phenylamino)benzonitrile (23a)

(0.116 g, 69%). Dark green solid; mp: 67-69 °C (Lit⁷. 68.7-69.4 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.32-7.27 (m, 3H), 7.25 (s, 1H), 7.20 (s, 1H), 7.19-7.05 (m, 4H), 5.89 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 144.6, 141.0, 130.2, 129.6, 123.5, 123.0, 120.6, 119.75, 113.1.

Figure 29: ¹H NMR (400 MHz, CDCl₃) of 3-(Phenylamino)benzonitrile (23a)

Figure 30: ¹³C NMR (100 MHz, CDCl₃) of 3-(Phenylamino)benzonitrile (23a)

4-(*p*-Tolylamin1o) benzonitrile (25a)

(0.114 g, 55%). Yellow solid; mp 100-102 °C (Lit⁸. 102-104 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.44 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.04 (brs, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 148.8, 137.3, 134.2, 133.9, 130.3, 122.2, 120.211, 114.5, 101.0, 21.

Figure 31: ¹H NMR (400 MHz, CDCl₃) of 4-(*p*-Tolylamino) benzonitrile (25a)

Figure 32: ¹³C NMR (100 MHz, CDCl₃) of 4-(*p*-Tolylamino) benzonitrile (25a)

2-Methy-N-phenyl aniline (27a)

(0.054 g, 30%). White solid; mp 42-44 °C (Lit.⁹ 43-45 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.34-7.26 (m, 4H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.04-6.90 (m, 4H), 5.45 (br, NH, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 144.0, 141.2, 131.0, 129.4, 128.3, 126.8, 122.0, 120.5, 118.7, 117.5, 18.0.

Figure 33: ¹H NMR (400 MHz, CDCl₃) of 2-Methy-*N*-phenyl aniline (27a)

Figure 34: ¹³C NMR (100 MHz, CDCl₃) of 2-Methy-*N*-phenyl aniline (27a)

Di-*p*-tolylamine (30a)

(0.68 g, 35%). White solid; mp 80-81 °C (Lit.¹⁰ 79-81 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.08 (d, J = 8.2 Hz, 4H), 6.97 (d, J = 8.2 Hz, 4H), 5.25 (brs, 1H), 2.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 141.3, 130.3, 129.9, 118.0, 20.8.

Figure 35: ¹H NMR (400 MHz, CDCl₃) of Di-*p*-tolylamine (30a)

Figure 36: ¹³C NMR (100 MHz, CDCl₃) of Di-*p*-tolylamine (30a)

Diphenyl sulfide (1b)

(0.176 g, 95%). Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.39 (d, *J* = 8 Hz, 4H), 7.35 (dd, *J*₁ = 8 Hz, *J*₂ = 4 Hz, 4H), 7.28 (dd, *J*₁ = 8 Hz, *J*₂ = 4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 135.86, 131.10, 129.25, 127.10. MS, m/z 186 (M+, 12 %), 184 (M-2, 100%), 150 (C₉H₁₀S, 12%), 108 (C₆H₄S, 90%), 76 (C₆H₄, 42%), 65 (C₅H₅, 40%), 51 (C₄H₃, 28%).

Figure 37: ¹H NMR (400 MHz, CDCl₃) of Diphenyl sulfide (1b)

Figure 38: ¹³C NMR (100 MHz, CDCl₃) of Diphenyl sulfide (1b)

Figure 39: Mass spectrum of Diphenyl sulfide (1b)

Phenyl (p-chlorophenyl) sulfide (2b)

(0.209 g, 95%). White solid; mp 67-69 °C (Lit.¹⁰ 69 °C). ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.35-7.25 (m, 9H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 135.2, 134.8, 133.1, 132.1, 131.4, 129.5, 129.4.

Figure 40: ¹H NMR (300 MHz, CDCl₃) of Phenyl (*p*-chlorophenyl) sulfide (2b)

Figure 41: ¹³C NMR (75 MHz, CDCl₃) of Phenyl (*p*-chlorophenyl) sulfide (2b)

Phenyl (*p*-tolyl) sulfide (5b)

(0.170 g, 85%). Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.40-7.30 (m, 9H, Ar-H), 2.42 (s, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 137.42, 137.36, 132.30, 131.33, 130.09, 129.82, 129.07, 126.43, 21.85.

Figure 42: ¹H NMR (300 MHz, CDCl₃) of Phenyl (*p*-tolyl) sulfide (**5b**)

Figure 43: ¹³C NMR (75 MHz, CDCl₃) of Phenyl (*p*-tolyl) sulfide (5b)

2-(Phenylthio) ethane-1-thiol (6b)

(1.51 g, 89%). Oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.30–7.28 (m, 2H), 7.23–7.14 (m, 3H), 3.11 (m, 2H, PhSCH₂), 2.76 (m, 2H, SCH₂), 1.18 (s, 1H, SH). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = δ 133.97, 129.28, 128.91, 128.07, 128.03, 125.59, 36.64, 32.17.

Figure 44: ¹H NMR (400 MHz, CDCl₃) of 2-(Phenylthio) ethane-1-thiol (6b)

Figure 45: ¹³C NMR (100 MHz, CDCl₃) of 2-(Phenylthio) ethane-1-thiol (6b)

(3-Nitrophenyl)(phenyl)sulfane (11b)

(0.104 g, 45%). Yellow solid; mp 88-90 °C (Lit.¹¹ 89-90 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 8.03 (s, 1H), 8.00 (d, *J* = 8.25 Hz, 1H), 7.50-7.47 (m, 3H), 7.42-7.23 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 148.8, 140.7, 134.3, 133.5, 132.2, 130.0, 129.8, 129.0, 123.2, 121.0.

Figure 46: ¹H NMR (400 MHz, CDCl₃) of (3-Nitrophenyl)(phenyl)sulfane (11b)

Figure 47: ¹³C NMR (100 MHz, CDCl₃) of (3-Nitrophenyl)(phenyl)sulfane (11b)

Phenyl (p-cyanophenyl) sulfide (14b)

(0.154 g, 70%). Yellow solid; mp 36-39 °C (Lit.¹² 38-40 °C). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.53-7.42 (m, 7H, Ar-H), 7.26-7.15 (m, 2H, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 145.7, 134.5, 132.4, 130.9, 129.9, 129.4, 127.4, 118.8, 108.8.

Figure 48: ¹H NMR (400 MHz, CDCl₃) of Phenyl (*p*-cyanophenyl) sulfide (14b)

Figure 49: ¹³C NMR (100 MHz, CDCl₃) of Phenyl (*p*-cyanophenyl) sulfide (14b)

Di-(*p*-tolyl) sulfane (20b)

(0.117 g, 55%). White solid; mp 55–56 °C (Lit.¹³ 55-57 °C); ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.23 (d, *J* = 7.8 Hz, 4H, ArH), 7.10 (d, *J* = 7.8 Hz, 4H, ArH), 2.32 (s, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 136.86, 132.65, 131.04, 129.87, 21.04.

Figure 50: ¹H NMR (300 MHz, CDCl₃) of Di-(*p*-tolyl) sulfane (20b)

Figure 51: ¹³C NMR (75 MHz, CDCl₃) of Di-(*p*-tolyl) sulfane (20b)

(2-Methoxyphenyl)(phenyl)sulfane (22b)

(0.173 g, 80%). Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.37-7.31 (m, 6H), 7.29 (d, J = 7.57 Hz, 1H), 7.26-6.76 (m, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 157.3, 134.5, 131.68,131.61, 129.2, 128.4, 127.2, 124.1, 121.3, 110.9, 56.0.

Figure 52: ¹H NMR (400 MHz, CDCl₃) of (2-Methoxyphenyl)(phenyl)sulfane (22b)

Figure 53: ¹³C NMR (100 MHz, CDCl₃) of (2-Methoxyphenyl)(phenyl)sulfane (22b)

References:

- [1] J. D. McClure and P. H. Williams, J. Org. Chem. 1962, 27, 627.
- [2] D. S. Raghuvanshi, A. K. Gupta and K. N. Singh, Org. Lett. 2012, 14, 4326.
- [3] S. Roscales and A. G. Csákÿ, Org. Lett. 2018, 20, 1667.
- [4] J. Yu, Y. Wang, P. Zhang and J. Wu, Synlett 2013, 24, 1448.
- [5] M. Mastalir, E. Pittenauer, B. Stöger, G. Allmaier and K. Kirchner, Org. Lett. 2017, 19, 2178.
- [6] X. Huang, S. Xu, Q. Tan, M. Gao, M. Li and B. Xu, Chem. Comm. 2014, 50, 1465.
- [7] Q. Yang, X. Lei, Z. Yin, Z. Deng and Y. Peng, Synthesis 2019, 51, 538.
- [8] B. P. Fors, N. R. Davis and S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 5766.
- [9] B. Kaboudin, Y. Abedi and T. Yokomatsu, Eur. J. Org. Chem. 2011, 2011, 6656.
- [10] A. Tlili, F. Monnier and M. Taillefer, Chem. Comm. 2012, 48, 6408.
- [11] M. Jiang, H. Li, H. Yang and H. Fu, Angew. Chem. Int. Ed. 2017, 56, 874. Angew. Chem.
 2017, 129, 892.
- [12] R. Singh, B. K. Allam, N. Singh, K. Kumari, S. K. Singh and K. N. Singh, *Adv. Synth. Catal.* 2015, **357**, 1181.
- [13] M. Jiang, H. Li, H. Yang and H. Fu, Angew. Chem. Int. Ed. 2017, 129, 892.