Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information for

Solution versus Solid-State Dual Emission of the Au(I)-Alkynyl Diphosphine Complexes via Modification of Polyaromatic Spacer

Andrey Belyaev,*a Ilya Kolesnikov,^b Alexei S. Melnikov,^c Vladislav V. Gurzhiy,^d Sergey P. Tunik,^e Igor O. Koshevoy,*a

^a Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland.

^b Center for Optical and Laser materials research, ^d Crystallography Department and ^e. Institute of Chemistry,

St. Petersburg State University, 198504, St. Petersburg, Russia.

^c St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia

E-mail: andreib@uef.fi; igor.koshevoy@uef.fi

Table of Contents

Experimental section, synthetic procedures	S3
Table S1. Crystallographic data for 1–3, 7, 9, 12, 13 and 19.	S9
Table S2. Selected bond lengths and angles for complexes 1–3, 7, 9, 12, 13 and 19.	S11
Figure S1. ESI MS of complexes 1–12.	S12
Figure S2. Molecular view of complex 2.	S13
Figure S3. Packing of complex 3 showing intermolecular O–H…O hydrogen bonding.	S14
Figure S4. Normalized solid-state excitation and emission spectra of 1-4 at 77 K and	S14
emission spectra of 1 in the solid-state and in solution at 77 K and at 298 K.	
Figure S5. Normalized excitation spectra of $5-12$ in degassed CH ₂ Cl ₂ at 298 K.	S15
Figure S6. Normalized solid-state excitation and emission spectra of 5–12 at 298 K	S16
and 77 K.	
Figure S7. Normalized solid-state excitation and emission spectra of 13–15 at 298 K	S16
and 77 K	
Figure S8. Normalized solid-state emission spectra of 17–19 at 77 K.	S17
Figure S9. Normalized solid-state excitation and emission spectra of 20–22 at 298 K	S17
and 77 K.	
Table S3. Calculated Commission Internationale de l'Eclairage (CIE) coordinates for	S17
complexes 17–22.	
References	S18

Experimental section

numbering scheme for 1-4

(AuC₂C₆H₅)₂L1 (1). Recrystallization by gas-phase diffusion of pentane into a dichloromethane/acetone (1:2 v/v) solution at +5 C^o gave yellow blocks crystals (93%). ESI MS (*m/z*): $[M-C_2Ph]^+$ 1041.14 (calculated 1041.14), $[M+Na]^+$ 1165.17 (calculated 1165.17). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 36.3 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.28–8.30 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.65–7.70 (m, *ortho*-H Ph, 8H), 7.43–7.52 (m, *meta+para*-H Ph, ortho-H C₂C₆H₅, 16H), 7.17–7.26 (m, *meta+para*-H C₂ C₆H₅, 6H), 7.10–7.14 (m, 2,3,6,7-H C₁₄H₈, 4H). Anal. Calc. for C₅₄H₃₈Au₂P₂: C, 56.76; H, 3.35. Found: C, 56.70; H, 3.28.

(AuC₂C(CH₃)₂OH)₂L1 (2). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane /acetone (1:1 v/v) solution at +5 C^o gave pale green blocks crystals (95%). ESI MS (m/z): [M–C₂C(CH₃)₂OH]⁺ 1023.14 (calcd 1023.14), [M+Na]⁺ 1129.18 calcd 1129.19), [M+K]⁺ 1145.16 (calcd 1145.16). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 36.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.22–8.25 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.60–7.65 (m, *ortho*-H Ph, 8H), 7.42–7.51 (m, *meta+para*-H Ph, 12H), 7.09–7.11 (m, 2,3,6,7-H C₁₄H₈, 4H), 1.96 (s, OH, 2H), 1.56 (s, Me, 12H). Anal. Calc. for C₄₈H₄₂Au₂O₂P₂: C, 52.09; H, 3.83. Found: C, 51.87; H, 3.74.

(AuC₂C₆H₁₀OH)₂L1 (3). Recrystallization by gas-phase diffusion of pentane into a dichloromethane solution at +5 C^o gave green needles (88%). ESI MS (*m/z*): [M-C₂C₆H₁₀OH]⁺ 1063.18 (calcd 1063.18), [M+Na]⁺ 1209.25 (calcd 1209.25), [M+K]⁺ 1225.22 (calcd 1225.23). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 36.3 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.22–8.25 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.60–7.65 (m, *ortho*-H Ph, 8H), 7.42–7.51 (m, *meta+para*-H Ph, 12H), 7.09–7.11 (m, 2,3,6,7-H C₁₄H₈, 4H), 3.0–0.5 (broad unresolved signals of Cy H atoms, 22H). Anal. Calc. for C₅₄H₅₀Au₂O₂P₂: C, 54.65; H, 4.25. Found: C, 54.73; H, 4.20.

(AuC₂C(C₆H₅)₂OH)₂L1 (4). Recrystallization by gas-phase diffusion of pentane into an acetone solution at +5 C° give pale yellow microcrystalline material (78%). ESI MS (*m/z*): $[M-C_2C(C_6H_5)_2OH]^+$ 1147.18 (calcd 1147.19), $[M+Na]^+$ 1377.25 (calcd 1377.26), $[M+K]^+$ 1393.22 (calcd 1393.23). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 36.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.23–8.26 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.68–7.70 (d, ³*J*_{HH} 7.4 Hz, *ortho*-H C₂C(C₆H₅)₂OH, 8H), 7.61–7.66 (m, *ortho*-H Ph, 8H), 7.41–7.50 (m, *meta+para*-H Ph, 12H), S3

7.25–7.29 (m, *meta*-H C₂C(C₆H₅)₂OH, 8H), 7.17–7.21 (t, ${}^{3}J_{HH}$ 7.3 Hz, *para*-H C₂C(C₆H₅)₂OH, 4H), 7.09–7.11 (m, 2,3,6,7-H C₁₄H₈, 4H), 2.79 (s, OH, 2H). Anal. Calc. for C₆₈H₅₀Au₂O₂P₂: C, 60.27; H, 3.72. Found: C, 60.41; H, 3.81.

(AuC₂C₆H₅)₂L2 (5). Recrystallization by gas-phase diffusion of pentane into a dichloromethane solution at +5 C^o gave colourless blocks crystals (72%). ESI MS (*m/z*): $[M+Na]^+$ 1115.14 (calcd 1115.15), $[M+K]^+$ 1131.16 (calcd 1131.13). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 37.6 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.47–8.49 (m, 2,5-H C₁₀H₆, 2H), 7.47–7.66 (m, *ortho+meta+para*-H Ph and *ortho*-H C₂C₆H₅ and 3,4-H C₁₀H₆, 26H), 7.18–7.26 (m, *meta+para*-H C₂C₆H₅, 6H), 6.85–6.89 (m, 1,6-H C₁₀H₆, 2H). Anal. Calc. for C₅₀H₃₆Au₂P₂: C, 54.96; H, 3.32. Found: C, 54.83; H, 3.40.

(AuC₂C(CH₃)₂OH)₂L2 (6). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C° gave colourless crystals (80%). ESI MS (m/z): [M+Na]⁺ 1079.17 (calcd 1079.16). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 36.6 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.40–8.42 (m, 2,5-H C₁₀H₆, 2H), 7.45–7.61 (m, *ortho+meta+para*-H Ph and 3,4-H C₁₀H₆, 22H), 6.80–6.84 (m, 1,6-H C₁₀H₆, 2H), 1.95 (s, OH, 2H), 1.57 (s, Me, 12H). Anal. Calc. for C₄₄H₄₀Au₂O₂P₂: C, 50.01; H, 3.82. Found: C, 50.12; H, 3.78.

(AuC₂C₆H₁₀OH)₂L2 (7). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C^o gave colourless crystals (76%). ESI MS (*m/z*): $[M+Na]^+$ 1159.24 (calcd 1159.23), $[2M+2Na]^{2+}$ 1159.24 (calcd 1159.23), $[M+K]^+$ 1175.21 (calcd 1159.21). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 37.6 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.41–8.44 (m, 2,5-H C₁₀H₆, 2H), 7.44–7.61 (m, *ortho+meta+para*-H Ph and 3,4-H C₁₀H₆, 22H), 6.80–6.84 (m, 1,6-H C₁₀H₆, 2H), 1.95 (s, OH, 2H), 1.25–1.90 (broad unresolved signals of Cy H atoms, 20H). Anal. Calc. for C₅₀H₅₀Au₂O₂P₂: C, 52.63; H, 4.43. Found: C, 52.50; H, 4.33.

(AuC₂C(C₆H₅)₂OH)₂L2 (8). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C^o gave white microcrystalline material (82%). ESI MS (m/z): [2M-2C₂C(Ph)₂OH]²⁺ 1097.67 (calcd 1097.67). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 37.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.43–8.46 (m, 2,5-H C₁₀H₆, 2H), 7.70 (d, ³J_{HH} 8.6 Hz, *ortho*-H C₂C(C₆H₅)₂OH, 8H), 7.42–7.64 (m, *ortho*+*meta*+*para*-H Ph and 3,4-H C₁₀H₆, 22H), 7.28 (m, *meta*-H C₂C(C₆H₅)₂OH, 8H), 7.19 (t, ³J_{HH} 7.2 Hz, *para*-H C₂C(C₆H₅)₂OH, 4H),

6.82–6.85 (m, 1,6-H C₁₀H₆, 2H), 2.79 (s, OH, 2H). Anal. Calc. for C₆₄H₄₈Au₂O₂P₂: C, 58.91; H, 3.71. Found: C, 59.01; H, 3.64.

(AuC₂C₆H₅)₂L3 (9). Recrystallization by gas-phase diffusion of pentane into a dichloromethane solution at +5 C^o gave colourless blocks crystals (89%). ESI MS (*m/z*): [M+Na]⁺ 1115.15 (calcd 1115.15). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 43.0 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.17 (d, ³J_{HP} 14.4 Hz, 3,6-H C₁₀H₆, 2H), 7.89 (dd, ³J_{HH} 8.5 Hz, ⁴J_{HH} 1.7 Hz, 2,5-H C₁₀H₆, 2H, 2H), 7.44–7.64 (m, *ortho+meta+para*-H Ph and *ortho*-H C₂C₆H₅ and 1,4-H C₁₀H₆, 26H), 7.17–7.30 (m, *meta+para*-H C₂C₆H₅, 6H). Anal. Calc. for C₅₀H₃₆Au₂P₂: C, 54.96; H, 3.32. Found: C, 54.87; H, 3.42.

(AuC₂C(CH₃)₂OH)₂L3 (10). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C^o gave pale yellow crystals (83%). ESI MS (*m/z*): [M-C₂C(CH₃)₂OH]⁺ 973.13 (calcd 973.13), [M+Na]⁺ 1079.17 (calcd 1079.16). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 43.0 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.12 (d, ³*J*_{HP} 14.4 Hz, 3,6-H C₁₀H₆, 2H), 7.86 (dd, ³*J*_{HH} 8.5 Hz, ⁴*J*_{HH} 1.7 Hz, 2,5-H C₁₀H₆, 2H), 7.34–7.63 (m, *ortho+meta+para*-H Ph and 1,4-H C₁₀H₆, 22H), 1.98 (s, OH, 2H), 1.60 (s, Me, 12H). Anal. Calc. for C₄₄H₄₀Au₂O₂P₂: C, 50.01; H, 3.82. Found: C, 49.95; H, 3.75.

(AuC₂C₆H₁₀OH)₂L3 (11). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C^o gave colourless crystals (95%). ESI MS (*m/z*): $[M+Na]^+$ 1159.24 (calcd 1159.24). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 42.9 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.12 (d, ³*J*_{HP} 14.4 Hz, 3,6-H C₁₀H₆, 2H), 7.82–7.91 (m, 2,5-H C₁₀H₆, 2H), 7.46–7.58 (m, *ortho+meta+para*-H Ph and 1,4-H C₁₀H₆, 22H), 1.98 (s, OH, 2H), 1.26–1.96 (broad unresolved signals of Cy H atoms, 20H). Anal. Calc. for C₅₀H₅₀Au₂O₂P₂: C, 52.73; H, 4.43. Found: C, 52.71; H, 4.35.

(AuC₂C(C₆H₅)₂OH)₂L3 (12). Recrystallization by gas-phase diffusion of dietyl ether into a dichloromethane solution at +5 C^o gave white microcrystalline material (92%). ESI MS (m/z): [M+Na]⁺ 1327.24 (calcd 1327.23). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 42.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.08 (d, ³J_{HP} 14.0 Hz, 3,6-H C₁₀H₆, 2H), 7.86 (dd, ³J_{HH} 8.4 Hz, ⁴J_{HH} 1.8 Hz, 2,5-H C₁₀H₆, 2H), 7.70–7.75 (m, *ortho*-H C₂C(C₆H₅)₂OH, 8H), 7.43–7.59 (m, *ortho+meta+para*-H Ph and 1,4-H C₁₀H₆, 22H), 7.3 (dd, ³J_{HH} 7.5 Hz, *meta*-H

 $C_2C(C_6H_5)_2OH$, 8H), 7.2 (t, ${}^{3}J_{HH}$ 7.3 Hz, *para*-H $C_2C(C_6H_5)_2OH$, 4H), 2.81 (s, OH, 2H). Anal. Calc. for $C_{64}H_{48}Au_2O_2P_2$: C, 58.91; H, 3.71. Found: C, 58.88; H, 3.86.

(AuC₂C₆H₅)₂L4 (13). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane/toluene (1:1 v/v) solution at room temperature gave yellow blocks crystals (77%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.8 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.44–8.46 (m, 1,4,5,8-H C₁₄H₈, 4H), 8.00–8.05 (m, *ortho*-H Ph, 8H), 7.67–7.69 (m, 2,3,6,7-H C₁₄H₈, 4H), 7.53–7.58 (m, *meta+para*-H Ph and *ortho*-H C₂C₆H₅, 16H), 7.26–7.28 (m, *meta+para*-H Ph and *meta+para*

(AuC₂C₆H₄CF₃)₂L4 (14). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane solution at room temperature gave yellow microcrystalline material (63%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.6 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.44–8.46 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.99–8.04 (m, *ortho*-H Ph, 8H), 7.66–7.69 (m, 2,3,6,7-H C₁₄H₈, 4H), 7.51–7.61 (m, *meta+para*-H Ph and *meta+ortho*-H C₂C₆H₄CF₃, 20H). Anal. Calc. for C₆₀H₃₆Au₂F₆P₂: C, 54.31; H, 2.73. Found: C, 54.70; H, 3.01.

(AuC₂C₆H₄OMe)₂L4 (15). Recrystallization by gas-phase diffusion of pentane into a dichloromethane/toluene (2:1 v/v) solution at +5 C^o gave yellow microcrystalline material (68%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.9 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.43–8.46 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.99–8.05 (m, *ortho*-H Ph, 8H), 7.66–7.69 (m, 2,3,6,7-H C₁₄H₈, 4H), 7.56–7.58 (m, *meta+para*-H Ph, 12H), 7.47–7.49 (d, ³J_{HH} 8.7 Hz, *meta*-H C₂C₆H₄OMe, 4H), 6.81 (d, ³J_{HH} 8.7 Hz, *ortho*-H C₂C₆H₄OMe, 4H), 3.80 (s, Me, 6H). Anal. Calc. for C₆₀H₄₂Au₂O₂P₂: C, 57.61; H, 3.38. Found: C, 57.63; H, 3.48.

(AuC₂C₆H₄NMe₂)₂L4 (16). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane solution at room temperature gave brown microcrystalline material Yield: (81%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 17.1 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.43–8.46 (m, 1,4,5,8-H C₁₄H₈, 4H), 7.99–8.05 (m, *ortho*-H Ph, 8H), 7.66–7.68 (m, 2,3,6,7-H C₁₄H₈, 4H), 7.53–7.57 (m, *meta+para*-H Ph, 12H), 7.44 (d, ³J_{HH} 8.8 Hz, *meta*-H C₂C₆H₄NMe₂, 4H), 6.63 (d, ³J_{HH} 8.8 Hz, *ortho*-H C₂C₆H₄NMe₂, 4H), 2.96 (s, Me, 12H). Anal. Calc. for C₆₂H₄₈Au₂N₂P₂: C, 58.32; H, 3.79. Found: C, 57.97; H, 3.95.

(AuC₂C₆H₅)₂L5 (17). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane/toluene (4:1 v/v) solution at +5 C^o gave colourless needles (91%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.7 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.23–8.27 (m, 2,5-H C₁₀H₆, 2H), 7.92–7.97 (m, *ortho*-H Ph, 8H), 7.84 (s, 1,6-H C₁₀H₆, 2H), 7.68–7.71 (m, 3,4-H C₁₀H₆,

2H), 7.52–7.55 (m, *meta+para-*H Ph and *ortho-*H C₂C₆H₅, 16H), 7.18–7.29 (m, *meta+para-*H C₂C₆H₅, 6H). Anal. Calc. for C₅₄H₃₆Au₂P₂: C, 56.86; H, 3.18. Found: C, 56.36; H, 3.30.

(AuC₂C₆H₄CF₃)₂L5 (18). Recrystallization by gas-phase diffusion of pentane into a dichloromethane/hexane (5:1 v/v) solution at +5 C^o gave white microcrystalline material (74%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.25–8.27 (m, 2,5-H C₁₀H₆, 2H), 7.91–7.97 (m, *ortho*-H Ph, 8H), 7.85 (s, 1,6-H C₁₀H₆, 2H), 7.69–7.71 (m, 3,4-H C₁₀H₆, 2H) 7.51–7.60 (m, *meta+para*-H Ph and *meta+ortho*-H C₂C₆H₄CF₃, 20H). Anal. Calc. for C₅₆H₃₄Au₂F₆P₂: C, 52.68; H, 2.68. Found: C, 52.31; H, 2.90.

(AuC₂C₆H₄OMe)₂L5 (19). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane solution at +5 C^o gave colourless blocks crystals (86%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.8 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.25–8.27 (m, 2,5-H C₁₀H₆, 2H), 7.91–7.97 (m, *ortho*-H Ph, 8H), 7.84 (s, 1,6-H C₁₀H₆, 2H), 7.68–7.70 (m, 3,4-H C₁₀H₆, 2H), 7.51–7.60 (m, *meta+para*-H Ph, 12H), 7.46–7.48 (d, ³J_{HH} 8.9 Hz, *ortho*-H C₂C₆H₄OMe, 4H), 6.80–6.82 (d, ³J_{HH} 8.9 Hz, *meta*-H C₂C₆H₄OMe, 4H), (s, Me, 6H). Anal. Calc. for C₅₆H₄₀Au₂O₂P₂: C, 56.01; H, 3.36. Found: C, 55.87; H, 3.42.

(AuC₂C₆H₅)₂L6 (20). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane solution at +5 C^o gave colourless crystals (77%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.6 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.16 (br s, 1,4-H C₁₀H₆, 2H), 7.86–7.93 (m, *ortho*-H Ph and 3,6-H C₁₀H₆, 10H), 7.65 (d, ³J_{HH} 8.5 Hz, 2,5-H C₁₀H₆, 2H), 7.51–7.61 (m, *meta+para*-H Ph and *meta+ortho*-H C₂C₆H₅, 20H), 7.22–7.29 (m, *para*-H C₂C₆H₅, 2H). Anal. Calc. for C₅₄H₃₆Au₂P₂: C, 56.86; H, 3.18. Found: C, 56.74; H, 3.33.

(AuC₂C₆H₄CF₃)₂L6 (21). Recrystallization by gas-phase diffusion of pentane into a dichloromethane/hexane (5:1 v/v) solution at +5 C^o gave white microcrystalline material (68%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.4 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.16 (br s, 1,4-H C₁₀H₆, 2H), 7.87–7.93 (m, *ortho*-H Ph and 3,6-H C₁₀H₆, 10 H), 7.66 (d, ³J_{HH} 9.4 Hz, 2,5-H C₁₀H₆, 2H), 7.51–7.61 (m, *meta+para*-H Ph and *meta+ortho*-H C₂C₆H₄CF₃, 20H). Anal. Calc. for C₅₆H₃₄Au₂F₆P₂: C, 52.31; H, 2.68. Found: C, 52.21; H, 2.87.

(AuC₂C₆H₄OMe)₂L6 (22). Recrystallization by gas-phase diffusion of diethyl ether into a dichloromethane solution at +5 C^o gave white microcrystalline material (83%). ³¹P{¹H} NMR (CDCl₃, 298 K; δ): 16.7 (s). ¹H NMR (CDCl₃, 298 K; δ): 8.15 (br s, 1,4-H C₁₀H₆, 2H), 7.86–7.92 (m, *ortho*-H Ph and 3,6-H C₁₀H₆, 10H), 7.65 (d, ³J_{HH} 8.7 Hz, 2,5-H C₁₀H₆, 2H), 7.49–7.53 (m, *meta+para*-H Ph, 12H), 7.47 (d, ³J_{HH} 8.7 Hz, *ortho*-H C₂C₆H₄OMe, 4H), 6.81

(d, ³*J*_{HH} 8.7 Hz, *meta*-H C₂C₆H₄OMe, 4H), 3.80 (s, Me, 6H). Anal. Calc. for C₅₆H₄₀Au₂O₂P₂: C, 56.01; H, 3.36. Found: C, 55.99; H, 3.46.

X-ray diffraction measurements. The crystals of 1–3, 7, 9, 12, 13 and 19 were immersed in cryo oil and measured at a temperature of 100 K, 120 K (12) or 150 K (13 and 19). The diffraction data were collected with Bruker SMART APEX II, Agilent Technologies Xcalibur and Supernova Atlas diffractometers using Mo*Ka* ($\lambda = 0.71073$ Å) or Cu*Ka* ($\lambda = 1.54184$ Å) radiation. The structures were solved by direct methods using the *SHELXS*-97 program¹ incorporated in the *OLEX2* program package.² A semi-empirical absorption correction (*SADABS*³ or *CrysAlisPro*⁴) was applied to the data for 1, 3, 7, 9, 12, 13 and 19. Analytical numeric absorption correction for **2** was applied in *CrysAlisPro*⁴ program complex using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.⁵

The crystallization solvent in the crystal of **13** was heavily disordered and could not be resolved unambiguously. The contribution of the missing solvent to the calculated structure factors was taken into account by using a *SQUEEZE* routine of *PLATON*.⁶ The missing solvent was not taken into account in the unit cell content.

All the carbon-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, and $U_{iso} = 1.2-1.5U_{eq}$ (parent atom). Positions of hydrogen atoms of the OH groups were localized from difference Fourier maps and kept fixed during refinement. Crystallographic data and refinement parameters for all structures are given in Table S1 (CCDC numbers are 993387, 993389, 993388, 1054718, 1054719, 1054720, 1937321 and 1937322 for 1–3, 7, 9, 12, 13 and 19, respectively).

Compound	1	2	3	7	9	12	13	19
CCDC	993387	993389	993388	1054718	1054719	1054720	1937321	1937322
Formula	C ₁₀₈ H ₇₆ Au ₄ P ₄ ,	$C_{48}H_{42}Au_2O_2P,$	$C_{54}H_{50}Au_2O_2P,$	$C_{50}H_{48}Au_2O_2P$,	$C_{50}H_{36}Au_2P_2,$	$C_{64}H_{48}Au_2O_2P,$	$C_{116}H_{76}Au_4P_4$	$C_{56}H_{40}Au_2O_2P_2,$
	$(CH_2Cl_2)_{1.9}$	$(CH_2Cl_2)_{0.18}$	CH_2Cl_2	$(CH_2Cl_2)_4$	CH_2Cl_2	$(CH_2Cl_2)_4$		CH_2Cl_2
Formula Mass	2447.64	1121.97	1271.74	1476.46	1177.58	1644.60	2381.51	1285.68
T (K)	100(2)	100(2)	100(2)	100(2)	100(2)	120(2)	150(2)	150(2)
λ (Å)	0.71073	1.54184	1.54184	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	P2/n	C2/c	<i>P</i> 1	<i>P</i> 1	$P2_{1}/n$
<i>a</i> (Å)	14.6199(3)	9.0271(2)	9.3433(5)	14.9682(8)	21.2923(9)	9.1677(3)	13.2298(5)	15.9763(14)
<i>b</i> (Å)	16.5507(2)	15.4167(3)	15.2120(9)	9.1406(4)	10.4445(2)	13.2137(4)	14.7956(6)	16.2982(14)
<i>c</i> (Å)	20.7234(6)	33.6004(7)	35.4426(17)	20.6675(8)	21.9593(8)	14.0242(4)	16.7821(6)	20.1413(17)
α (°)	90	90	90	90	90	102.5430(10)	66.1570(10)	90
β (°)	101.121(2)	90.243(2)	105.2850(10)	97.371(5)	118.544(5)	98.0120(10)	83.7050(10)	112.807(2)
γ (°)	90	90	90	90	90	95.7660(10)	64.1230(10)	90
$V(Å^3)$	4920.27(19)	4676.04(18)	4859.3(5)	2804.3(2)	4289.9(3)	1627.06(9)	2694.45(18)	4834.5(7)
Size (mm ³)	0.32x0.27x	0.42x0.23x	0.29x0.09x	0.21x0.17x	0.24x0.16x	0.20x0.12x	0.49 x 0.39 x	0.42 x 0.16 x 0.11
	0.19	0.08	0.07	0.09	0.09	0.09	0.29	
μ (mm ⁻¹)	6.160	12.726	13.140	5.703	7.066	4.925	5.531	4834.5(7)
F(000)	2360	2166	2480	1440	2264	804	1148	2488
Ζ	2	4	4	2	4	1	1	4

Table S1. Crystallographic data for 1–3, 7, 9, 12, 13 and 19.

θ range, (°)	3.065-28.809	4.881–67.475	3.180-67.488	2.740-27.500	3.509-36.553	2.59-36.52	2.516-25.999	2.436 - 30.059
Index ranges	-16<=h<=18,	-10<=h<=10,	-11<=h<=10,	-19<=h<=18,	-29<=h<=27,	-12<=h<=12,	-16<=h<=16,	-22<=h<=21,
	-21<=k<=20,	-18<=k<=13,	-18<=k<=18,	-11<=k<=11,	-13<=k<=14,	-18<=k<=18,	-18<=k<=18,	-22<=k<=22,
	-26<=l<=12	-40<=l<=34	-42<=1<=42	-24<=l<=26	-30<=l<=30	-19<=1<=19	-20<=l<=20	-28<=1<=26
$\rho_{calc}(Mg/m^3)$	1.652	1.594	1.738	1.749	1.823	1.678	1.468	1.766
Total ref.	26402	38843	41740	20807	14471	94475	47531	84585
Unique ref.	10893	8344	8435	6316	6165	9467	10539	14010
Unique $ F_{\rm o} \ge 4\sigma_F$	8762	7408	7781	5544	5523	9066	9586	10117
$R_{\rm int}$	0.0307	0.0540	0.0331	0.0483	0.0436	0.0237	0.0228	0.0549
R_{σ}	0.0469	0.0373	0.0240	0.0451	0.0539	0.0112	0.0184	0.0552
Completeness to θ = 25.242°	99.9%	95.4%	91.7%	99.8%	96.7%	98.3%	99.3%	99.8%
$R_1 (F_{\rm o} \ge 4\sigma_F)$	0.0387	0.0603	0.0280	0.0299	0.0315	0.0163	0.0311	0.0315
wR_2 $(F_o \ge 4\sigma_F)$	0.0911	0.1625	0.0690	0.0694	0.0671	0.0396	0.0765	0.0498
R_1 all data	0.0555	0.0656	0.0308	0.0373	0.0362	0.0177	0.0350	0.0617
wR_2 all data	0.0994	0.0656	0.0707	0.0742	0.0705	0.0401	0.0786	0.0560
GOF	1.058	1.063	1.026	1.065	1.059	1.063	1.056	1.001
$ ho_{\rm min}, ho_{\rm min}, { m e}/{ m \AA}^3$	-1.881, 2.424	-3.112, 2.880	-1.853, 3.618	-1.183, 1.030	-2.002, 1.870	-0.778, 1.084	-1.043, 1.577	-0.953, 0.986
$\overline{R_1 = \Sigma F_0 - F_c / \Sigma F_0 }; wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}; w = 1 / [\sigma^2 (F_0^2) + (aP)^2 + bP], \text{ where } P = (F_0^2 + 2F_c^2) / 3; s = \{ \Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2} $								
where <i>n</i> is the number of reflections and <i>p</i> is the number of refinement parameters; Refinement method - Full-matrix least-squares on F^2 .								

	Au–Au, Å	Au–P, Å	Au–C, Å	C≡C, Å	P–Au–C, °
1	3.0917(4)	2.2783(14) 2.2737(15)	2.007(6) 2.046(7)	1.136(9) 1.187(9)	169.2(2) 170.1(2)
2	-	2.2778(15)	1.999(7)	1.197(12)	176.8(2)
3	-	2.2880(8) 2.2782(9)	2.013(4) 2.013(4)	1.194(6) 1.187(6)	175.2(1) 177.7(1)
7	-	2.2791(8)	2.011(4)	1.196(5)	176.5(1)
9	3.2118(3)	2.2785(9)	2.011(4)	1.183(5)	172.5(1)
12	-	2.2703(4)	2.005(2)	1.202(2)	176.31(5)
13	3.0326(3)	2.2611(14) 2.2697(14)	2.008(6) 2.005(6)	1.155(8) 1.189(8)	171.6(2) 176.1(2)
19	3.0673(3)	2.2715(9) 2.2745(9)	2.024(3) 2.024(3)	1.184(4) 1.172(5)	176.8(1) 172.2(2)

Table S2. Selected bond lengths and angles for complexes 1–3, 7, 9, 12, 13 and 19.

Figure S1. ESI MS of complexes 1–12.

Figure S2. Molecular view of complex **2** (thermal ellipsoids are shown at 50% probability). Right view shows packing with intermolecular O–H…O hydrogen bonding.

Figure S3. Packing of complex 3 showing intermolecular O-H-O hydrogen bonding.

Figure S4. (A) normalized solid-state excitation and emission spectra of 1–4 at 77 K (λ_{ex} = 415 nm); (B) the emission spectra of 1 in the solid-state and in solution at 77 K and at room temperature.

Figure S5. Normalized excitation spectra of 5-12 in degassed CH₂Cl₂ (298 K).

Figure S6. Normalized solid-state excitation and emission spectra of **5–8** (top) and **9–12** (bottom) at 298 K and 77 K ($\lambda_{ex} = 330$ nm).

Figure S7. Normalized solid-state excitation and emission spectra of 13–15 at 298 K and 77 K ($\lambda_{ex} = 350$ nm).

Figure S8. Normalized solid-state emission spectra of 17–19 at 77 K ($\lambda_{ex} = 330$ nm).

Figure S9. Normalized solid-state excitation and emission spectra of **20–22** at 298 K (under an Ar atmosphere) and 77 K ($\lambda_{ex} = 330$ nm).

<i>Table S3</i> . Calculated Commission Internationale de l'Eclairage (CIE) coordinates for
complexes 17–22 in solid state on air or under argon atmosphere at 298 K.

C

Sample	CIE coordinates (x, y) under air/argon atmosphere
17	(0.37, 0.21)/(0.46, 0.23)
18	(0.26, 16)/(0.45, 0.25)
19	(0.54, 0.31)/(0.59, 0.31)
20	(0.27, 0.25)/(0.28, 0.25)
21	(0.32, 0.32)/(0.37, 0.40)
22	(0.23, 0.19)/(0.29, 0.28)

S17

References

- 1. G. M. Sheldrick, *SHELXS97, Program for Crystal Structure Determination,* University o Göttingen, Göttingen, Germany, 1997.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 3. G. M. Sheldrick, *SADABS-2008/1 Bruker AXS Area Detector Scaling and Absorption Correction*, Bruker AXS, Madison, Wisconsin, USA, 2008.
- CrysAlisPro, Oxford Diffraction/Agilent Technologies, Yarnton, UK, 1.171.36.32 edn., 2013.
- 5. R. C. Clark, J. S. Reid, Acta Cryst., 1995, A51, 887-897.
- 6. A. L. Spek, *PLATON, A Multipurpose Crystallographic Tool,* Utrecht University, Utrecht, The Netherlands, 1.17 edn., 2013.