Supporting Information

Supporting Information

Use of a bis-1,2,3-triazole gelator for the preparation of supramolecular metallogels and stabilization of gold nanoparticles

Markus Tautz,^a César Saldías,^b Antonio Diego Lozano-Gorrín^{c,d} and David Díaz Díaz*^{a,e}

^a Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. E-mail: David.Diaz@chemie.uni-regensburg.de

^b Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 302, Correo 22, Santiago, Chile ^c Departamento de Química, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain.

^d Instituto Universitario de Materiales y Nanotecnología (IMN), Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain

^e Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain E-mail: d.diaz.diaz@ipna.csic.es

Contents List

Caption

page S4

- **S1.** Custom made set-up for T_{gel} determination. A) Front view showing the composition between electric heating plate, alumina block and digital thermo-couple. B) Top view of the set-up during experimentation containing vials (4 cm length × 1 cm diameter) with gel materials. It is important to mention that the alumina block was constructed especially for one type of vials, which fit smoothly inside the molds to ensure a good transmission of the heat-flow. Verification of the independence of the position inside the custom made apparatus was also performed.
- **S2.** *Top*: Plots of T_{gel} (A) and gelation time (B) *vs* concentrations of gelator C₁₂-Cyc and gold in DMF. *Bottom*: Plots of T_{gel} (C) and gelation time (D) *vs* concentrations of gelator **click-C₁₂-Cyc** and gold in DMF. Note: HAuCl₄·3H₂O was found to be hardly soluble in nonpolar solvents and reasonably soluble in NMP, nitromethane, diethyl ether, acetone, DMF, DMSO, ethanol, propan-2-ol, THF and methanol.
- **S3.** FT-IR spectra of the metallo-xerogels obtained from C_{12} -Cyc (*top*) and S6 click- C_{12} -Cyc (*bottom*) incorporating HAuCl₄·3H₂O (molar ratio gelator:metal = 1:1; $c = 40 \text{ mmol } \text{L}^{-1}$) in DMF.
- **S4.** PXRD spectrum of C_{12} -Cyc (*top*) and click- C_{12} -Cyc (*bottom*) xerogel S7 incorporating HAuCl₄·3H₂O in DMF.
- **S5.** Response of metallogels prepared from C_{12} -Cyc (*left*) and click- C_{12} -Cyc S8 (*right*) in DMF to UV light irradiation at 254 nm for 6 h.
- **S6.** Oscillatory rheological experiments of gels prepared from C_{12} -Cyc and S9 click- C_{12} -Cyc in DMF ($c = 40 \text{ g L}^{-1}$) incorporating HAuCl₄·3H₂O. *Top*: DFS-plots. *Middle*: DSS-plots. *Bottom*: DTS-Plots.
- **S7.** UV-Vis spectra of gold nanoparticles dispersed in gels prepared from C_{12} - $Cyc (c = 20 \text{ mmol } \text{L}^{-1}) (left)$ and click- C_{12} -Cyc $(c = 20 \text{ mmol } \text{L}^{-1}) (right)$. Gels were suspended in DCM. Note 1: For [Au] = 40 mmol L⁻¹, the plasmon band was even more pronounced for the gel made of click- C_{12} -Cyc. Note 2: Both gelators showed the same resonance bands as the corresponding raw gelator compounds. This suggested that the intermolecular interactions and the aggregation patterns remained similar when incorporating HAuCl₄·3H₂O into the network. In addition, xerogel formation from DMF was found to maintain a high degree of order inside the network as indicated by the crystalline behavior observed by XRD spectroscopy.
- **S8.** Additional FESEM pictures of a xerogel prepared from **click-C**₁₂-**Cyc** (c = S11 40 mmol L⁻¹) with HAuCl₄·3H₂O (c = 40 mmol L⁻¹) and Et₃N (c = 400 mmol L⁻¹) in DMF.
- **S9.** Additional TEM pictures of a gel prepared from C_{12} -Cyc ($c = 40 \text{ mmol } L^{-1}$) S12 with HAuCl₄·3H₂O ($c = 40 \text{ mmol } L^{-1}$) and Et₃N ($c = 400 \text{ mmol } L^{-1}$) in DMF.
- **S10.** Additional TEM pictures of a gel prepared from C_{12} -Cyc ($c = 20 \text{ mmol } L^{-1}$) S12 and click- C_{12} -Cyc ($c = 20 \text{ mmol } L^{-1}$) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } L^{-1}$) and Et₃N ($c = 400 \text{ mmol } L^{-1}$) in DMF.
- **S11.** Additional TEM pictures of a gel prepared from **click-C**₁₂-**Cyc** (c = 40 S13 mmol L⁻¹) with HAuCl₄·3H₂O (c = 40 mmol L⁻¹) and Et₃N (c = 400 mmol L⁻¹) in DMF.
- S12. Nanoparticle size distribution diagrams of gels prepared from C_{12} -Cyc (c = S14)

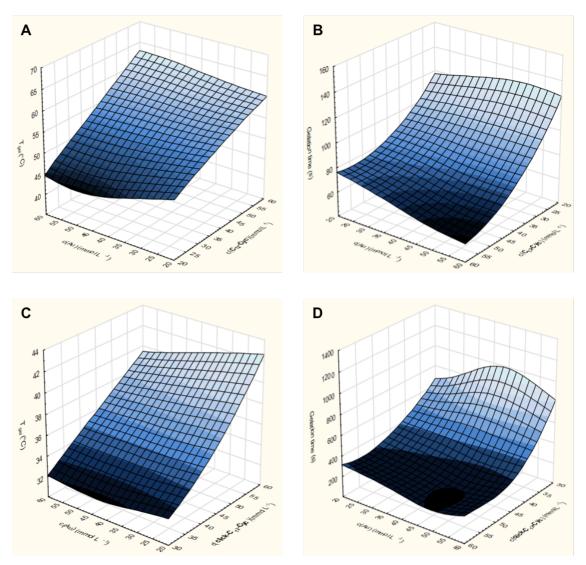
Fig.

S14

40 mmol L⁻¹) (*left*), C₁₂-Cyc and click-C₁₂-Cyc ($c = 20 \text{ mmol } \text{L}^{-1}$ (each)) (*middle*) and click-C₁₂-Cyc ($c = 40 \text{ mmol } \text{L}^{-1}$) (*right*) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } \text{L}^{-1}$) and Et₃N ($c = 400 \text{ mmol } \text{L}^{-1}$) in DMF. Note: The use of DMF as solvent and Et₃N as reducing agent enabled the easy preparation of the xerogels by freeze-drying the corresponding wet gels for 5 h under reduced pressure.

S13. Appearance of gold NPs-containing xerogel of **click-C**₁₂-Cyc.

Contents List


TableCaptionpageS1.Screening of gel formation with different mixtures containing click-C12-CycS15and 250 μL of solvent in the presence of metal ions.S2.Screening of gel formation with different mixtures containing C12-Cyc,S18

click-C₁₂-Cyc and 250 μ L of solvent in the presence of gold and platinum salts.

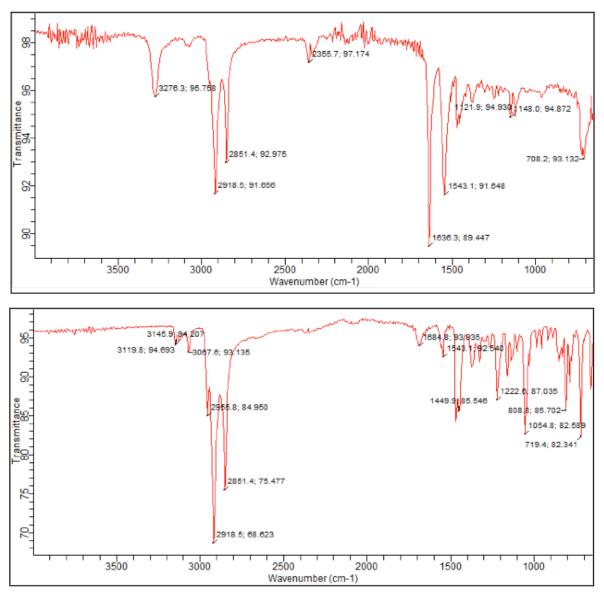
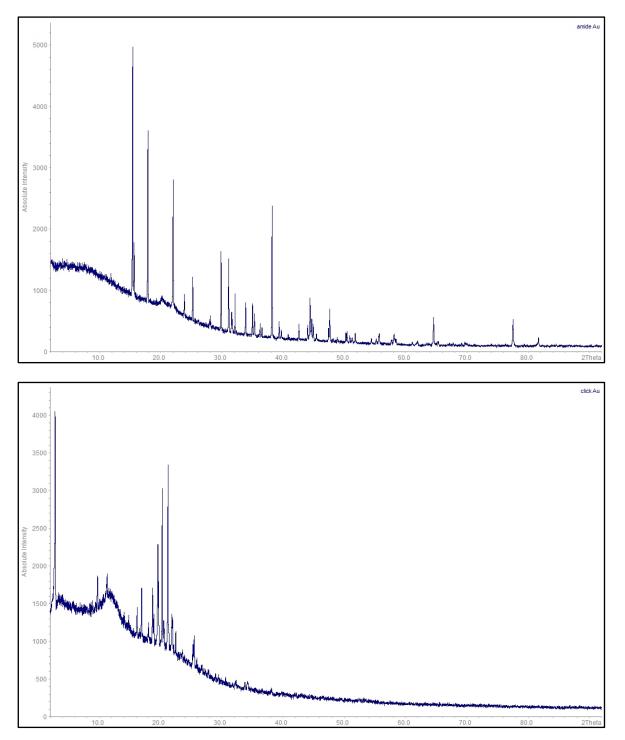
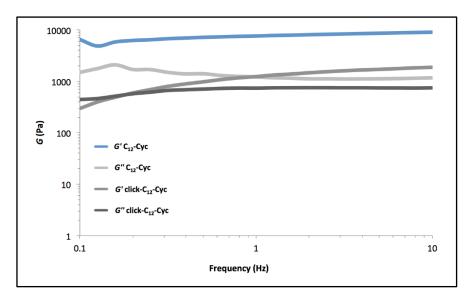
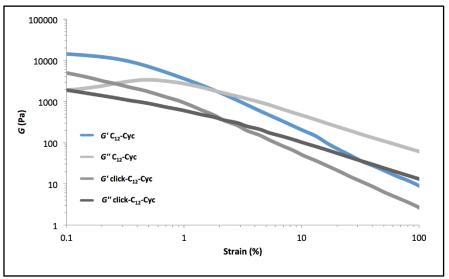
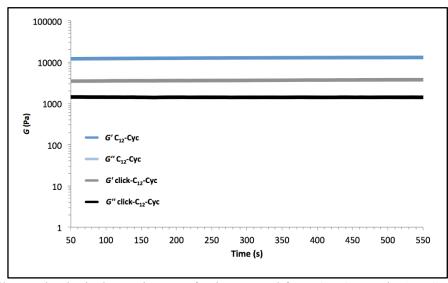

S3. Screening of gel formation and reduction potential with different mixtures S20 containing C_{12} -Cyc, click- C_{12} -Cyc and 250 µL of solvent in the presence of HAuCl₄ · 3 H₂O and reducing agents.

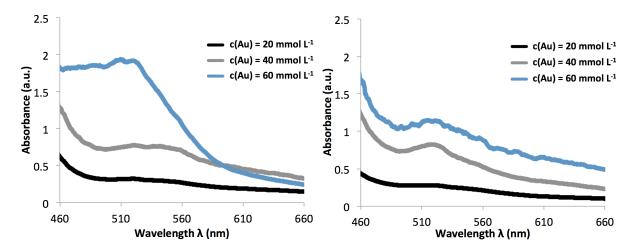
Fig. S1 Custom made set-up for T_{gel} determination. A) Front view showing the composition between electric heating plate, alumina block and digital thermo-couple. B) Top view of the set-up during experimentation containing vials (4 cm length × 1 cm diameter) with gel materials. It is important to mention that the alumina block was constructed especially for one type of vials, which fit smoothly inside the molds to ensure a good transmission of the heat-flow. Verification of the independence of the position inside the custom made apparatus was also performed.

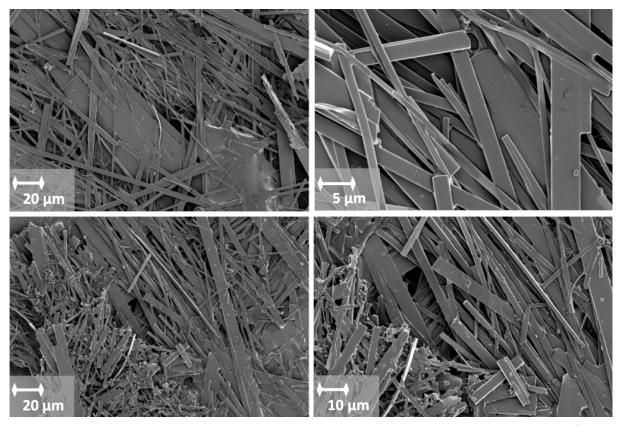
Fig. S2 *Top*: Plots of T_{gel} (A) and gelation time (B) vs concentrations of gelator C_{12} -Cyc and gold in DMF. *Bottom*: Plots of T_{gel} (C) and gelation time (D) vs concentrations of gelator **click**- C_{12} -Cyc and gold in DMF. Note: HAuCl₄·3H₂O was found to be hardly soluble in nonpolar solvents and reasonably soluble in NMP, nitromethane, diethyl ether, acetone, DMF, DMSO, ethanol, propan-2-ol, THF and methanol.

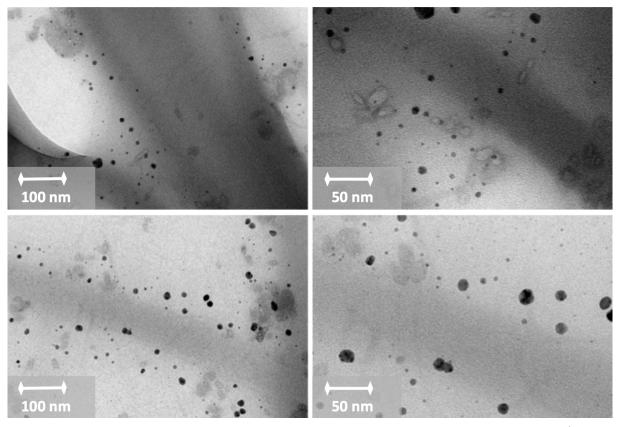
Fig. S3 FT-IR spectra of the metallo-xerogels obtained from C_{12} -Cyc (*top*) and click- C_{12} -Cyc (*bottom*) incorporating HAuCl₄·3H₂O (molar ratio gelator:metal = 1:1; $c = 40 \text{ mmol } \text{L}^{-1}$) in DMF.


Fig. S4 PXRD spectrum of C_{12} -Cyc (top) and click- C_{12} -Cyc (bottom) xerogel incorporating HAuCl₄·3H₂O in DMF.


Fig. S5 Response of metallogels prepared from C_{12} -Cyc (*left*) and click- C_{12} -Cyc (*right*) in DMF to UV light irradiation at 254 nm for 6 h.




Fig. S6 Oscillatory rheological experiments of gels prepared from C_{12} -Cyc and click- C_{12} -Cyc in DMF ($c = 40 \text{ g L}^{-1}$) incorporating HAuCl₄·3H₂O. *Top*: DFS-plots. *Middle*: DSS-plots. *Bottom*: DTS-Plots. Note: Although it is not visible in the plot, G'' data are located under the G'' data of click- C_{12} -Cyc.

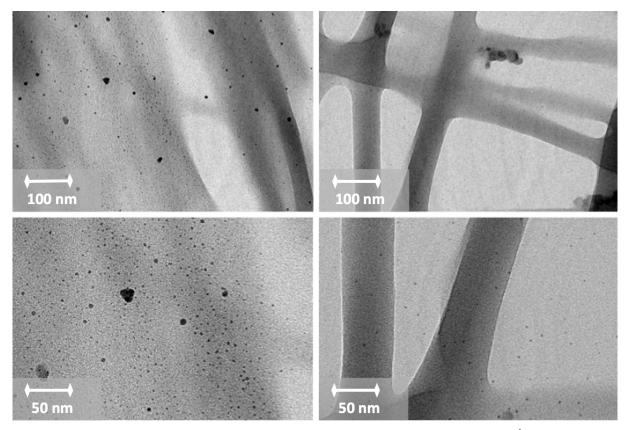

Fig. S7 UV-Vis spectra of gold nanoparticles dispersed in gels prepared from C_{12} -Cyc ($c = 20 \text{ mmol } \text{L}^{-1}$) (*left*) and **click-** C_{12} -Cyc ($c = 20 \text{ mmol } \text{L}^{-1}$) (*right*). Gels were suspended in DCM. Note 1: For [Au] = 40 mmol L⁻¹, the plasmon band was even more pronounced for the gel made of **click-** C_{12} -Cyc. Note 2: Both gelators showed the same resonance bands as the corresponding raw gelator compounds. This suggested that the intermolecular interactions and the aggregation patterns remained similar when incorporating HAuCl₄·3H₂O into the network. In addition, xerogel formation from DMF was found to maintain a high degree of order inside the network as indicated by the crystalline behavior observed by XRD spectroscopy.

Fig. S8 Additional FESEM pictures of a xerogel prepared from **click-C₁₂-Cyc** ($c = 40 \text{ mmol } \text{L}^{-1}$) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } \text{L}^{-1}$) and Et₃N ($c = 400 \text{ mmol } \text{L}^{-1}$) in DMF.

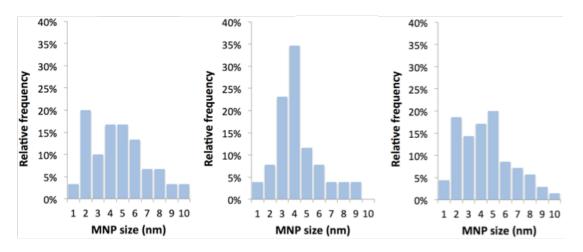

Fig. S9 Additional TEM pictures of a gel prepared from C_{12} -Cyc ($c = 40 \text{ mmol } L^{-1}$) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } L^{-1}$) and Et₃N ($c = 400 \text{ mmol } L^{-1}$) in DMF.

Fig. S10 Additional TEM pictures of a gel prepared from C_{12} -Cyc ($c = 20 \text{ mmol } L^{-1}$) and click- C_{12} -Cyc ($c = 20 \text{ mmol } L^{-1}$) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } L^{-1}$) and Et₃N ($c = 400 \text{ mmol } L^{-1}$) in DMF.

Fig. S11 Additional TEM pictures of a gel prepared from **click-C**₁₂-**Cyc** ($c = 40 \text{ mmol } \text{L}^{-1}$) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } \text{L}^{-1}$) and Et₃N ($c = 400 \text{ mmol } \text{L}^{-1}$) in DMF.

Fig. S12 Nanoparticle size distribution diagrams of gels prepared from C_{12} -Cyc ($c = 40 \text{ mmol } \text{L}^{-1}$) (*left*), C_{12} -Cyc and **click**- C_{12} -Cyc ($c = 20 \text{ mmol } \text{L}^{-1}$ (each)) (*middle*) and **click**- C_{12} -Cyc ($c = 40 \text{ mmol } \text{L}^{-1}$) (*right*) with HAuCl₄·3H₂O ($c = 40 \text{ mmol } \text{L}^{-1}$) and Et₃N ($c = 400 \text{ mmol } \text{L}^{-1}$) in DMF. Note: The use of DMF as solvent and Et₃N as reducing agent enabled the easy preparation of the xerogels by freeze-drying the corresponding wet gels for 5 h under reduced pressure.

Fig. S13 Appearance of gold NPs-containing xerogel of click-C₁₂-Cyc.

Table S1 Screening of gel formation with different mixtures containing click-C₁₂-Cyc and 250 μ L of solvent in the presence of metal ions.

Entry	Metal salt	Solvent	Preparation	$ \begin{array}{c} \beta \ (\textbf{click-C_{12}-Cyc}) \ / \\ mg \ mL^{-1} \end{array} $	β (metal) / mg mL ⁻¹	c (metal) / mol%	Appear- ance
1	PdCl ₂	DMSO	heat., sonic.	4,8	2,0	124%	op. sol.
2	PdCl ₂	DMF	heat., sonic.	5,6	1,6	85%	cl. sol.
3	Cu(OAc) ₂ ·H ₂ O	DMSO	heat., sonic.	6,4	2,8	115%	op. sol.
4	Cu(OAc) ₂ ·H ₂ O	DMF	heat., sonic.	4,8	1,6	88%	cl. sol.
5	Co(OAc) ₂ ·4H ₂ O	DMSO	heat., sonic.	4,8	2,0	88%	op. sol.
6	Co(OAc) ₂ ·4H ₂ O	DMF	heat., sonic.	5,6	2,0	76%	cl. sol.
7	CoCl ₂ ·6H ₂ O	DMSO	heat, son.	4,4	2,4	121%	op. sol.
8	CoCl ₂ ·6H ₂ O	DMF	heat., sonic.	4,4	2,0	101%	cl. sol.
9	NiCl ₂ ·6H ₂ O	DMSO	heat., sonic.	5,2	2,0	85%	op. sol.
10	NiCl ₂ ·6H ₂ O	DMF	heat., sonic.	5,6	2,4	95%	cl. sol.
11	-	DMSO	heat., sonic.	5,2	-	-	op. sol.
12	-	DMF	heat., sonic.	5,2	-	-	cl. sol.
13	PdCl ₂	DMSO	heat. and cool.	4,8	2,0	124%	op. sol.
14	PdCl ₂	DMF	heat. and cool.	5,6	1,6	85%	cl. sol.
15	Cu(OAc) ₂ ·H ₂ O	DMSO	heat. and cool.	6,4	2,8	115%	op. sol.
16	Cu(OAc) ₂ ·H ₂ O	DMF	heat. and cool.	4,8	1,6	88%	cl. sol.
17	Co(OAc) ₂ ·4H ₂ O	DMSO	heat. and cool.	4,8	2,0	88%	op. sol.
18	Co(OAc) ₂ ·4H ₂ O	DMF	heat. and cool.	5,6	2,0	76%	cl. sol.
19	CoCl ₂ ·6H ₂ O	DMSO	heat. and cool.	4,4	2,4	121%	op. sol.
20	CoCl ₂ ·6H ₂ O	DMF	heat. and cool.	4,4	2,0	101%	cl. sol.

21	NiCl ₂ ·6H ₂ O	DMSO	heat. and cool.	5,2	2,0	85%	op. sol.
22	NiCl ₂ ·6H ₂ O	DMF	heat. and cool.	5,6	2,4	95%	cl. sol.
23	-	DMSO	heat. and cool.	5,2	-	-	op. sol.
24	-	DMF	heat. and cool.	5,2	-	-	cl. sol.
25	PdCl ₂	DMSO	heat. and cool.	8,8	2,0	68%	susp.
26	PdCl ₂	DMF	heat. and cool.	10	1,6	48%	cl. sol.
27	Cu(OAc) ₂ ·H ₂ O	DMSO	heat. and cool.	8,4	2,8	88%	susp.
28	Cu(OAc) ₂ ·H ₂ O	DMF	heat. and cool.	7,2	1,6	59%	cl. sol.
29	Co(OAc) ₂ ·4H ₂ O	DMSO	heat. and cool.	9,2	2,0	46%	susp.
30	Co(OAc) ₂ ·4H ₂ O	DMF	heat. and cool.	9,6	2,0	44%	cl. sol.
31	CoCl ₂ ·6H ₂ O	DMSO	heat. and cool.	6,4	2,4	83%	susp.
32	NiCl ₂ ·6H ₂ O	DMSO	heat. and cool.	10	2,0	44%	susp.
33	NiCl ₂ ·6H ₂ O	DMF	heat. and cool.	7,6	2,4	70%	cl. sol.
34	-	DMSO	heat. and cool.	10	-	-	susp.
35	-	DMF	heat. and cool.	5,2	-	-	cl. sol.
36	PdCl ₂	DMSO	heat. and cool.	12	2,0	48%	gel
37	PdCl ₂	DMF	heat. and cool.	12	1,6	41%	cl. sol.
38	Cu(OAc) ₂ ·H ₂ O	DMSO	heat. and cool.	13	2,8	56%	susp.
39	Cu(OAc) ₂ ·H ₂ O	DMF	heat. and cool.	10	1,6	41%	cl. sol.
40	Co(OAc) ₂ ·4H ₂ O	DMSO	heat. and cool.	11	2,0	38%	susp.
41	Co(OAc) ₂ ·4H ₂ O	DMF	heat. and cool.	19	2,0	23%	cl. sol.

42	CoCl ₂ ·6H ₂ O	DMSO	heat. an cool.	nd	8,4	2,4	63%	susp.
43	CoCl ₂ ·6H ₂ O	DMF	heat. an cool.	nd	6,4	2,0	69%	cl. sol.
44	NiCl ₂ ·6H ₂ O	DMSO	heat. an cool.	nd	12	2,0	37%	susp.
45	NiCl ₂ ·6H ₂ O	DMF	heat. an cool.	nd	9,2	2,4	58%	cl. sol.
46	-	DMSO	heat. an cool.	nd	13	-	-	susp.
47	-	DMF	heat. an cool.	nd	10	-	-	cl. sol.

 op. gel = opaque gel; visc. susp. = viscous suspension; prec. = precipitate with clear solution; heat. = heating; cool. = cooling; sonic. = sonication

Entry	Metal salt	Solvent	Gelator	Preparation	β (gelator) / mg/mL	β (metal) / mg/mL	c (metal) / mol%	Apearance
1	HAuCl ₄ ·3H ₂ O	Cyclohexane	click- C ₁₂ -Cyc	heat. and cool.	15	18,4	177%	clear sol.
2	HAuCl ₄ ·3H ₂ O	DMSO	click- C ₁₂ -Cyc	heat. and cool.	16	15,6	146%	op. gel. yellow
3	HAuCl ₄ ·3H ₂ O	Cyclohexane	C ₁₂ -Cyc	heat. and cool.	17	11,6	97%	op. gel. yellow
4	HAuCl ₄ ·3H ₂ O	DMSO	C ₁₂ -Cyc	heat. and cool.	16	21,6	190%	op. gel. yellow
5	PdCl ₂	Cyclohexane	click- C ₁₂ -Cyc	heat. and cool.	15	5,6	103%	op. sol.
6	PdCl ₂	DMSO	click- C ₁₂ -Cyc	heat. and cool.	15	8,0	147%	op. sol.
7	PdCl ₂	Cyclohexane	C ₁₂ -Cyc	heat. and cool.	15	5,6	99%	op. sol. colorless
8	PdCl ₂	DMSO	C ₁₂ -Cyc	heat. and cool.	10	3,6	97%	op. sol. dark orange
9	HAuCl ₄ ·3H ₂ O	Nitromethane	C ₁₂ -Cyc	heat. and cool.	24	31,6	186%	prec. yellow
10	HAuCl ₄ ·3H ₂ O	Nitromethane	click- C ₁₂ -Cyc	heat. and cool.	24	28,8	175%	cl. sol. yellow
11	HAuCl ₄ ·3H ₂ O	Diethylether	C ₁₂ -Cyc	heat. and cool.	24	22,0	129%	prec.
12	HAuCl ₄ ·3H ₂ O	Acetone	C ₁₂ -Cyc	heat. and cool.	23	22,0	134%	part. gel
13	HAuCl ₄ ·3H ₂ O	Ethanol	C ₁₂ -Cyc	heat. and cool.	25	22,8	130%	precipitate
14	HAuCl ₄ ·3H ₂ O	Isopropanol	C ₁₂ -Cyc	heat. and cool.	26	18,8	103%	op. gel
15	HAuCl ₄ ·3H ₂ O	THF	C ₁₂ -Cyc	heat. and cool.	25	16,8	95%	prec.
16	HAuCl ₄ ·3H ₂ O	Isopropanol	click- C ₁₂ -Cyc	heat. and cool.	52	16,4	46%	cl. gel
17	HAuCl ₄ ·3H ₂ O	Acetone	click- C ₁₂ -Cyc	heat. and cool.	45	16,4	54%	cl. gel
18	HAuCl ₄ ·3H ₂ O	DMF	C ₁₂ -Cyc	heat. and cool.	24	16,8	99%	op. gel
19	HAuCl ₄ ·3H ₂ O	DMF	click-	heat. and	24	16,4	100%	op. gel

Table S2 Screening of gel formation with different mixtures containing C_{12} -Cyc, click- C_{12} -Cyc and 250 μ L of solvent in the presence of gold and platinum salts.

				C ₁₂ -Cyc	cool.				
2	20	HAuCl ₄ ·3H ₂ O	NMP	C ₁₂ -Cyc	heat. and cool.	24	16,8	99%	op. gel
4	21	HAuCl ₄ ·3H ₂ O	NMP	click- C ₁₂ -Cyc	heat. and cool.	24	16,4	100%	cl. gel

op. gel = opaque gel; cl. gel = clear gel; prec. = precipitate; part. gel = partial gel (partial solution); cl. sol. = clear solution; op. sol. = opaque solution; heat. = heating; cool. = cooling

Entry	Solvent	Gelator	Preparation	Reducing agent (RA)	β (gelator) / mg/mL	β (Au) / mg/mL	c (Au) / mol%	β (RA) / mg/mL	c (RA) / mol%	Apearance
1	NMP	C ₁₂ - Cyc	heat, sonic. ^a	NEt ₃	26	33,6	160%	4,4	81%	op. gel dark yellow
2	NMP	click- C ₁₂ - Cyc	heat, sonic. ^a	Et ₃ N	25	16,0	81%	4,4	87%	visc. susp. orange
3	NMP	C ₁₂ - Cyc	heat, sonic. ^b	Hydroquinone	25	15,6	76%	5,6	98%	op. gel red-brown
4	NMP	click- C ₁₂ - Cyc	heat, sonic. ^b	Hydroquinone	24	24,0	124%	5,2	96%	visc. susp. red-brown
5	DMF	C ₁₂ - Cyc	heat, sonic. ^a	Et ₃ N	26	15,2	71%	5,3	96%	op. gel orange
6	DMF	click- C ₁₂ - Cyc	heat, sonic. ^a	Et ₃ N	24	18,0	96%	5,3	109%	op. gel yellow
7	DMF	C ₁₂ - Cyc	heat, sonic. ^b	Hydroquinone	24	18,8	97%	8,8	162%	op. gel yellow
8	DMF	click- C ₁₂ - Cyc	heat, sonic. ^b	Hydroquinone	25	15,2	76%	8,4	150%	op. gel yellow
9	DMF	C ₁₂ - Cyc	heat, sonic.	NaBH ₄	27	22,0	100%	3,6	170%	op. gel black red
10	DMF	click- C ₁₂ - Cyc	heat, sonic.	NaBH4	24	18,0	95%	8,0	438%	prec. black

Table S3 Screening of gel formation and reduction potential with different mixtures containing C_{12} -Cyc, click- C_{12} -Cyc and 250 μ L of solvent in the presence of HAuCl₄ · 3 H₂O and reducing agents.

op. gel = opaque gel; visc. susp. = viscous suspension; prec. = precipitate with clear solution; sonic. = sonication

a) Addition of Et_3N in last position and then application of heat + sonication

b) Addition of hydroquinone in first place and then addition of NMP and application of heat + sonication