Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Interfacial Charge Shielding Directs Synthesis of Dendritic Mesoporous Silica Nanospheres by a Dual-Templating Approach

Bo Peng,^a Yu-Xin Zong,^a Meng-Zhen Nie,^a Bing-Qian Shan,^a Tai-Qun Yang,^a Pan Hao,^a Shi-Yu Ma,^{a,*} Koon-Fung Lam,^{b,*} Kun Zhang^{a,*}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Rd., Shanghai 200062, P.R. China. E-mail: syma@chem.ecnu.edu.cn, kzang@chem.ecnu.edu.cn, kzang@chem.ecnu.edu.cn</a

Figure S1 XRD patterns of MSNs synthesized by using different templates.

Figure S2. Thermogravimetric analysis (TG) of DMSNs synthesized by using dual templates

^b Division of Environment and Sustainability, Hong Kong University of Science and Technology E-mail: <u>louislkf@ust.hk</u>

CTAB and NP-7 with different molar ratios of CTAB / NP-7 (0.5, 1 and 2) and the TG of MSNs synthesized by using a solo cationic surfactant CTAB (MSNs-CTAB) was demonstrated for comparison. The weight loss centered at 265 °C was attributed to the electrostatically interacting CTA⁺ from CTAB, the peak minima centered at 315 °C was due to the incorporation of nonionic surfactant NP-7.

Figure S3. N₂ adsorption-desorption isotherms (left) and pore size distribution (PSD) plots (right) of the DMSNs synthesized by using dual templates CTAB and NP-7 with different molar ratios of CTAB / NP-7: (a) 0.5; (b) 1 and (c) 2, respectively. PSD calculated by the BJH method from desorption branches.

Figure S4. Thermogravimetric analysis (TG) of MSNs synthesized by using dual templates CTAB and C₁₆OH with different molar ratios of CTAB /C₁₆OH (0.5, 1 and 2). The weight loss centered at 275 °C was attributed to the electrostatically interacting CTA⁺, the weight loss centered at 310 °C was attributed to the non-interacting CTAB, and the peak minima centered at 405 °C was due to the incorporation of fatty alcohol 1-hexadecanol (C₁₆OH).

Figure S5. N_2 adsorption–desorption isotherms (left) and pore size distribution (PSD) plots (right) of MSNs synthesized by using templates CTAB and pore swelling agent $C_{16}OH$. PSD calculated by the BJH method from desorption branches.

Figure S6 TEM images of MSNs-CTAB samples collected at the reaction time of 30 s.

Figure S7. ¹³C CP MAS NMR spectra of MSNs synthesized at various reaction conditions. Black line represents the MSNs synthesized by using a solo cationic surfactant CTAB, and the red line represents the DMSNs synthesized by using dual templates CTAB and NP-7. Black arrows point out characteristic chemical shifts of nonionic surfactants NP-7.

Figure S8. Thermogravimetric analysis (TG) of DMSNs synthesized by using a solo cationic surfactant CTAB and dual templates CTAB with NP-7 or Tween-80, respectively. Silica_{RM} means silica residual mass in unit of percentage obtained from TG analysis at 800 $^{\circ}$ C.

Figure S9. SEM (left) and TEM (right) images of DMSNs-NP-7 calcined at varied temperatures of 700 $^{\circ}$ C (a and b), 900 $^{\circ}$ C (c and d), and boiled in water for 24 hours (e and f).

Sample ^a	$\mathbf{S}_{\text{BET}}^{}b}$	V_{total}^{c}	V _{Meso} ^d	${\rm D_{BJH}}^{\rm e}$	PSD^{f}
	(m^2 / g)	(ml / g)	(ml / g)	(nm)	(nm)
MSNs	675	1.25	0.43	2.4	50 ± 10
DMSNs-Tween-80	371	0.59	0.28	16	74 ± 10
DMSNs-NP-7-0.5 ^g	474	0.71	0.38	12	74±10
DMSNs-NP-7-1	502	0.80	0.41	15	74±10
DMSNs-NP-7-2	565	0.77	0.45	3.5/16	67±10
MSNs-C ₁₆ OH	515	1.22	0.38	3.3	74±10
DMSNs-CTATos ^h	552	1.45	0.41	3.2/16	120 ± 10
DMSNs-SDS ⁱ	450	1.59	0.83	3.2/10.6	120 ± 10
MCM-41 ^j	853	0.79	0.70	2.9	-

 Table S1. Textural Characteristics of Calcined MSNs Synthesized in Various Reaction

 Conditions

^aMSNs were synthesized by a single surfactant CTAB or CTAB with C₁₆OH, denoted as MSNs-CTAB and MSNs-C₁₆OH. ^aDMSNs were synthesized by CTAB with NP-7, Tween-80, and SDS, or a single surfactant CTATos, denoted as DMSNs-NP-7, DMSNs-Tween-80, DMSNs-SDS and DMSNs-CTATos, respectively. ^bSpecific surface area measured from N₂ physisorption. ^cTotal pore volume measured at P/P₀= 0.99. ^dMeso pore volume measured at P/P₀= 0.80. ^ePore diameter calculated from the BJH theoretical model. ^fParticle size distribution was determined by measuring the diameters of at least 100 particles under TEM. ^gDMSNs-NP-7-X, X represented the CTAB/NP-7 molar ratio. ^hFrom ref 1. ⁱFrom ref 2. ^jFrom ref 3.

Table S2. Formation of cyclohexane oxide (CHO) from cyclohexene using different catalysts^a

Catalyst	Conv/%	CHO sel/%	CHO yield/%
Ti-MCM-41-Cal ^b	25.7	92.2	23.7
Ti-MCM-41-Sil	22.8	97.0	22.1
Ti-DMSNs-Cal	14.8	95.5	14.1
Ti-DMSNs-Sil	24.5	96.0	23.5

^aReaction conditions: Catalyst, 50 mg; acetonitrile, 10 ml; cyclohexene, 10 mmol; TBHP (5.5 M in decane), 10 mmol; temp., 333 K; time, 2 h. ^bTi-MCM-41-X, X represented the remove methods of templates: calcination (Cal) or trimethylsilylation (Sil). It is same to Ti-DMSNs.

References

- K. Zhang, L. L. Xu, J. G. Jiang, N. Calin, K. F. Lam, S. J. Zhang, H. H. Wu, G. D. Wu, B. Albela, L. Bonneviot and P. Wu, *Journal of the American Chemical Society*, 2013, **135**, 2427-2430.
- P. C. Liu, Y. J. Yu, B. Peng, S. Y. Ma, T. Y. Ning, B. Q. Shan, T. Q. Yang, Q. S. Xue, K. Zhang and P. Wu, *Green Chemistry*, 2017, 19, 5575-5581.
- 3. K. Zhang, H.-L. Chen, B. Albela, J.-G. Jiang, Y.-M. Wang, M.-Y. He and L. Bonneviot, *European Journal of Inorganic Chemistry*, 2011, **2011**, 59-67.