Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

Synthesis, structure and metal ion coordination of novel benzodiazamacrocyclic ligands bearing pyridyl and picolinate pendant side-arms

Pavel A. Panchenko,^{a,b,*} Anastasia D. Zubenko,^a Ekaterina Yu. Chernikova,^a Yuri V. Fedorov,^a Anna V. Pashanova,^{a,b} Valentina A. Karnoukhova,^a Ivan V. Fedyanin,^{a,c} Olga A. Fedorova,^{a,b}

^aA. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991, Vavilova str. 28, Moscow, Russia, ^bD. Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya sqr. 9, Moscow, Russia, ^cPlekhanov Russian University of Economics, 117997, Stremyanny per. 36, Moscow, Russia

CONTENTS

Potentiometric titration (Figures S1–S24)	S2
ESI-MS-spectra (Figures S25–S28)	S10
NMR data (Figures S29–S49 and Tables S1–S3)	S14
X-ray data (Figure S50, Table S4)	S27

Potentiometric titration

Figure S1. Titration curve for **Py15C5** acidified with excess of HClO₄. I= 0.1M KNO₃, T=25°C. [**Py15C5**]=0.0007 M, [HClO₄]=0.0023 M, [NaOH]=0.068 M, initial volume=13 mL (left). Species distribution diagram of **Py15C5**. [**Py15C5**]_{tot}=10⁻³ M; I= 0.1M KNO₃, T=25°C (right)

Figure S2. Titration curve for **Py18C6** acidified with excess of HClO₄. I= 0.1M KNO₃, T=25°C. [**Py18C6**]=0.0004 M, [HClO₄]=0.002 M, [NaOH]=0.068 M, initial volume=13 mL (left). Species distribution diagram of **Py18C6**. [**Py18C6**]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S3. Titration curve for H₂Pic15C5 acidified with excess of HClO₄. I= 0.1M KNO₃, T=25°C. [H₂Pic15C5]=0.00077 M, [HClO₄]=0.0046 M, [NaOH]=0.068 M, initial volume=13 mL (left). Species distribution diagram of H₂Pic15C5. [H₂Pic15C5]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S4. Titration curve for H₂Pic18C6 acidified with excess of HClO₄. I= 0.1M KNO₃, T=25°C. [H₂Pic18C6]=0.0004 M, [HClO₄]=0.002 M, [NaOH]=0.0497 M, initial volume=15 mL (left). Species distribution diagram of H₂Pic18C6. [H₂Pic18C6]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S5. Potentiometric titration curves of **Py15C5** alone (blue, triangles) and in the presence of Ni²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py15C5**] = 7.0×10^{-4} M, [H⁺] = 2.3×10^{-3} M, [Ni²⁺] = 7.0×10^{-4} M (left). Nickel speciation in the presence of **Py15C5**. [Ni²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1 M KNO₃, 25°C (right)

Figure S6. Potentiometric titration curves of **Py18C6** alone (blue, triangles) and in the presence of Ni²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py18C6**] = 4.0×10^{-4} M, [H⁺] = 2.0×10^{-3} M, [Ni²⁺] = 4.0×10^{-4} M (left). Nickel speciation in the presence of **Py18C6**. [Ni²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S7. Potentiometric titration curves of **H**₂**Pic15C5** alone (blue, triangles) and in the presence of Ni²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**H**₂**Pic15C5**] = 7.7×10^{-4} M, [H⁺] = 4.6×10^{-3} M, [Ni²⁺] = 7.7×10^{-4} M (left). Nickel speciation in the presence of **H**₂**Pic15C5**. [Ni²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S8. Potentiometric titration curves of $H_2Pic18C6$ in the presence of Ni^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume = 13mL, [$H_2Pic18C6$] = 5.0 × 10⁻⁴ M, [H^+] = 3.0 × 10⁻³ M, [Ni^{2+}] = 5.0 × 10⁻⁴ M (left). Nickel speciation in the presence of $H_2Pic18C6$. [Ni^{2+}]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S9. Potentiometric titration curves of **H**₂**Pic15C5** alone (blue, triangles) and in the presence of Cu²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**H**₂**Pic15C5**] = 7.7×10^{-4} M, [H⁺] = 4.6 $\times 10^{-3}$ M, [Cu²⁺] = 7.7×10^{-4} M (left). Copper speciation in the presence of **H**₂**Pic15C5**. [Cu²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S10. Potentiometric titration curves of $H_2Pic18C6$ in the presence of Cu^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume = 13mL, $[H_2Pic18C6] = 5.0 \times 10^{-4}$ M, $[H^+] = 3.0 \times 10^{-3}$ M, $[Cu^{2+}] = 5.0 \times 10^{-4}$ M (left). Copper speciation in the presence of $H_2Pic18C6$. $[Cu^{2+}]_{tot} = [L]_{tot} = 10^{-3}$ M; I= 0.1M KNO₃, 25°C (right)

Figure S11. Potentiometric titration curves of **Py18C6** alone (blue, triangles) and in the presence of Cu²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py18C6**] = 4.0×10^{-4} M, [H⁺] = 2.0×10^{-3} M, [Cu²⁺] = 4.0×10^{-4} M (left). Copper speciation in the presence of **Py18C6**. [Cu²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S12. Potentiometric titration curves of **Py15C5** alone (blue, triangles) and in the presence of Cu^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py15C5**] = 7.0×10^{-4} M, [H⁺] = 2.3×10^{-3} M, [Cu²⁺] = 7.0×10^{-4} M (left). Copper speciation in the presence of **Py15C5**. [Cu²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S13. Potentiometric titration curves of **Py15C5** alone (blue, triangles) and in the presence of Zn^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py15C5**] = 7.0×10^{-4} M, [H⁺] = 2.3×10^{-3} M, [Zn²⁺] = 7.0×10^{-4} M (left). Zinc speciation in the presence of **Py15C5**. [Zn²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S14. Potentiometric titration curves of **Py18C6** alone (blue, triangles) and in the presence of Zn^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py18C6**] = 4.0×10^{-4} M, [H⁺] = 2.0×10^{-3} M, [Zn²⁺] = 4.0×10^{-4} M (left). Zinc speciation in the presence of **Py18C6**. [Zn²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S15. Potentiometric titration curves of **H**₂**Pic15C5** alone (blue, triangles) and in the presence of Zn²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**H**₂**Pic15C5**] = 7.7×10^{-4} M, [H⁺] = 4.6×10^{-3} M, [Zn²⁺] = 7.7×10^{-4} M (left). Zinc speciation in the presence of **H**₂**Pic15C5**. [Zn²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S16. Potentiometric titration curves of $H_2Pic18C6$ in the presence of Zn^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume = 13mL, $[H_2Pic18C6] = 5.0 \times 10^{-4}$ M, $[H^+] = 3.0 \times 10^{-3}$ M, $[Zn^{2+}] = 5.0 \times 10^{-4}$ M (left). Zinc speciation in the presence of $H_2Pic18C6$. $[Zn^{2+}]_{tot} = [L]_{tot} = 10^{-3}$ M; I = 0.1M KNO₃, 25°C (right)

Figure S17. Potentiometric titration curves of **H**₂**Pic18C6** in the presence of Cd²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume = 13mL, [**H**₂**Pic18C6**] = 5.0×10^{-4} M, [H⁺] = 3.0×10^{-3} M, [Cd²⁺] = 5.0×10^{-4} M (left). Cadmium speciation in the presence of **H**₂**Pic18C6**. [Cd²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S18. Potentiometric titration curves of **H**₂**Pic15C5** alone (blue, triangles) and in the presence of Cd²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**H**₂**Pic15C5**] = 7.7×10^{-4} M, [H⁺] = 4.6×10^{-3} M, [Cd²⁺] = 7.7×10^{-4} M (left). Cadmium speciation in the presence of **H**₂**Pic15C5**. [Cd²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S19. Potentiometric titration curves of **Py15C5** alone (blue, triangles) and in the presence of Cd^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py15C5**] = 7.0×10^{-4} M, [H⁺] = 2.3×10^{-3} M, [Cd²⁺] = 7.0×10^{-4} M (left). Cadmium speciation in the presence of **Py15C5**. [Cd²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S20. Potentiometric titration curves of **Py18C6** alone (blue, triangles) and in the presence of Cd^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py18C6**] = 4.0×10^{-4} M, [H⁺] = 2.0×10^{-3} M, [Cd²⁺] = 4.0×10^{-4} M (left). Cadmium speciation in the presence of **Py18C6**. [Cd²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S21. Potentiometric titration curves of **Py18C6** alone (blue, triangles) and in the presence of Pb²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py18C6**] = 4.0×10^{-4} M, [H⁺] = 2.0×10^{-3} M, [Pb²⁺] = 4.0×10^{-4} M (left). Lead speciation in the presence of **Py18C6**. [Pb²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S22. Potentiometric titration curves of **Py15C5** alone (blue, triangles) and in the presence of Pb²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**Py15C5**] = 7.0×10^{-4} M, [H⁺] = 2.3×10^{-3} M, [Pb²⁺] = 7.0×10^{-4} M (left). Lead speciation in the presence of **Py15C5**. [Pb²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S23. Potentiometric titration curves of **H**₂**Pic15C5** alone (blue, triangles) and in the presence of Pb²⁺ (black – experimental, red – calculated) by NaOH (0.068M). Initial volume=13mL, [**H**₂**Pic15C5**] = 7.7×10^{-4} M, [H⁺] = 4.6×10^{-3} M, [Pb²⁺] = 7.7×10^{-4} M (left). Lead speciation in the presence of **H**₂**Pic15C5**. [Pb²⁺]_{tot}=[L]_{tot}=10⁻³ M; I= 0.1M KNO₃, 25°C (right)

Figure S24. Potentiometric titration curves of $H_2Pic18C6$ in the presence of Pb^{2+} (black – experimental, red – calculated) by NaOH (0.068M). Initial volume = 13mL, $[H_2Pic18C6] = 5.0 \times 10^{-4}$ M, $[H^+] = 3.0 \times 10^{-3}$ M, $[Pb^{2+}] = 5.0 \times 10^{-4}$ M (left). Lead speciation in the presence of $H_2Pic18C6$. $[Pb^{2+}]_{tot} = [L]_{tot} = 10^{-3}$ M; I = 0.1M KNO₃, 25°C (right)

Figure S25. ESI-MS spectra of Py-15C5 in the presence of equimolar amount of M(ClO₄)₂ in water

Figure S26. ESI-MS spectra of Py-18C6 in the presence of equimolar amount of M(ClO₄)₂ in water

Figure S27. ESI-MS spectra of H₂Pic-15C5 in the presence of equimolar amount of M(ClO₄)₂ in water

Figure S28. ESI-MS spectra of H₂Pic-18C6 in the presence of equimolar amount of M(ClO₄)₂ in water

NMR data

Figure S29. ¹H NMR spectra of **Py-15C5** ($C_L = 10 \text{ mM}$) in D₂O at different pD in the absence (a,b) and in the presence (c,d,e) of 2 eq. Zn²⁺, Cd²⁺, Pb²⁺

Figure S30. ¹H NMR spectra of **Py-18C6** ($C_L = 9 \text{ mM}$) in D₂O at different pD in the absence (a,b) and in the presence (c,d,e) of 2 eq. Zn²⁺, Cd²⁺, Pb²⁺

Figure S31. ¹H NMR spectra of **H**₂**Pic-18C6** ($C_L = 8$ mM) in D₂O at different pD in the absence (a,b) and in the presence (c,d,e) of 2 eq. Zn²⁺, Cd²⁺, Pb²⁺

Figure S32. ¹³C NMR spectra of Py-15C5 in the presence of Cd^{2+} ($C_L = 7 \text{ mM}, \text{ pD} = 7.7$)

Figure S33. ¹³C NMR spectra of H₂Pic-15C5 in the presence of Cd²⁺ ($C_L = 10$ mM, pD = 9.1)

Figure S34. ¹H-¹H COSY spectrum of ligand Py-15C5 in the presence of Zn^{2+} ($C_L = 10$ mM, pD = 5.5)

Figure S35. ¹H-¹H NOESY spectrum of ligand Py-15C5 in the presence of Zn^{2+} ($C_L = 10$ mM, pD = 5.5)

Figure S36. ¹H-¹H COSY spectrum of ligand Py-15C5 in the presence of Cd^{2+} ($C_L = 7 \text{ mM}, \text{ pD} = 7.7$)

Figure S37. ¹H-¹H NOESY spectrum of ligand **Py-15C5** in the presence of Cd^{2+} ($C_L = 7 \text{ mM}, \text{ pD} = 7.7$)

Figure S38. ¹H-¹H COSY spectrum of ligand **Py-15C5** in the presence of Pb²⁺ ($C_L = 8 \text{ mM}, \text{ pD} = 7.3$)

Figure S39. ¹H-¹H COSY spectrum of ligand **Py-18C6** in the presence of Zn^{2+} ($C_L = 8 \text{ mM}$, pD = 6.6)

Figure S40. ¹H-¹H NOESY spectrum of ligand Py-18C6 in the presence of Zn^{2+} ($C_L = 8$ mM, pD = 6.6)

Figure S41. ¹H-¹H NOESY spectrum of ligand Py-18C6 in the presence of Zn^{2+} ($C_L = 8 \text{ mM}$, pD = 6.6)

Figure S42. ¹H-¹H COSY spectrum of ligand Py-18C6 in the presence of Cd^{2+} ($C_L = 5 \text{ mM}, \text{ pD} = 7.8$)

Figure S43. ¹H-¹H NOESY spectrum of ligand Py-18C6 in the presence of Cd^{2+} ($C_L = 5 \text{ mM}, \text{ pD} = 7.8$)

Figure S44. ¹H-¹H COSY spectrum of ligand H₂Pic-15C5 in the presence of Zn^{2+} ($C_L = 10$ mM, pD = 9.2)

Figure S45. ¹H-¹H NOESY spectrum of ligand H₂Pic-15C5 in the presence of Zn^{2+} ($C_L = 10$ mM, pD = 9.2)

Figure S46. ¹H-¹H COSY spectrum of ligand H₂Pic-15C5 in the presence of Cd²⁺ ($C_L = 10$ mM, pD = 9.1)

Figure S47. ¹H-¹H NOESY spectrum of ligand **H**₂**Pic-15C5** in the presence of Cd²⁺ ($C_L = 10 \text{ mM}, \text{ pD} = 9.1$)

Figure S48. ¹H-¹H COSY spectrum of ligand H₂Pic-15C5 in the presence of Pb²⁺ ($C_L = 10 \text{ mM}, \text{ pD} = 7.5$)

Figure S49. ¹H-¹H NOESY spectrum of ligand **H**₂**Pic-15C5** in the presence of Pb²⁺ ($C_L = 10 \text{ mM}, \text{ pD} = 7.5$)

	L,	L,	ZnL,	CdL,	PbL,
	pD = 9.7	pD = 3.5	pD = 9.2	pD = 9.1	pD = 7.5
H_1	- 6.83	6.82	6.71	6.79	6.87
$H_{1'}$			6.71	6.59	6.64
H ₂	(79	6.68	6.56	6.79	6.94
H _{2'}	0.78		6.56	6.06	6.05
H _{4e}		4.20	3.97	4.62	4.39
H_{4a}	2.07		3.97	3.96	4.16
H _{4'e}	5.97	4.20	4.10	3.82	3.66
H _{4'a}			3.87	3.39	2.88
H _{5e}			3.09	3.55	3.32
H _{5a}		2.04	3.23	3.01	2.88
H _{5'e}	3.02	3.84	2.88	3.60	3.50
H _{5'a}			2.69	2.63	2.97
H _{6e}		3.74	2.77	3.68	3.23
H _{6a}	2 70		2.90	2.92	2.83
H _{6'e}	2.79		3.23	2.88	2.63
H _{6'a}	-		2.46	2.63	2.49
H _{7e}	2.52	3.96	3.53	4.00	3.87
H_{7a}			4.33	3.76	3.76
H _{7'e}	5.55		4.33	4.08	3.98
H _{7'a}			3.23	3.60	3.66
H_{8x}		4.08	3.92	3.76	3.89
H _{8y}	2.02		4.27	4.88	4.84
H _{8'x}	5.92		3.30	3.88	4.25
H _{8'y}			4.41	4.70	4.64
H ₁₀	7 27	7.61	7.67	7.60	7.71
H _{10'}	1.57	/.01	7.47	7.60	7.65
H ₁₁	7.62	7 07	8.11	8.01	7.97
H _{11′}	/.02	/.8/	7.62	7.77	7.97
H ₁₂	7 57	7 70	8.00	7.88	7.82
H _{12'}	1.57	1.19	7.62	7.37	7.61

Table S1. ¹H chemical shifts (ppm) of (**Pic-B15C5**)^{2–} (L, $C_L = 10$ mM) recorded in D₂O solution at different pD in the absence and presence of 2 eq. Zn²⁺, Cd²⁺ and Pb²⁺ (400 MHz, 298 K). See Figure 1 for proton labeling.

	L,	L,	ZnL ²⁺ ,	CdL ²⁺ ,	PbL ²⁺ ,
	pD = 8.1	pD = 3.5	pD = 5.5	pD = 7.7	pD = 7.3
H ₁	6.88	6.86	6.91	6.86	7.06
H ₂	6.88	6.86	6.91	6.86	7.06
H_{4e}	1.00	4.36	4.29	4.21	4.38
H_{4a}	4.00		3.74	3.83	4.25
H_{5e}	2.14	רד נ	3.91	3.49	3.38
H_{5a}	3.14	3.77	3.19	3.00	3.06
H _{6e}	2.00	2.65	3.68	3.32	3.22
H_{6a}	2.99	3.05	3.13	3.17	2.75
H _{7e}	4.00	3.90	3.79	3.99	3.54
H_{7a}			3.62	3.90	3.15
H _{8x}	2.62	4.61	4.65	4.31	4.53
$H_{8\nu}$	5.05		4.02	4.08	4.38
H ₁₀	7.43	7.48	7.52	7.52	7.68
H ₁₁	7.74	7.80	7.91	7.86	7.96
H ₁₂	7.31	7.29	7.31	7.14	7.38
H ₁₃	8.37	8.27	8.47	7.94	8.37

Table S2. ¹H chemical shifts (ppm) of **Py-B15C5** (L, $C_L = 10 \text{ mM}$) recorded in D₂O solution at different pD in the absence and presence of 2 eq. Zn²⁺, Cd²⁺ and Pb²⁺ (400 MHz, 298 K). See Figure S29 for proton labeling.

Table S3. ¹H chemical shifts (ppm) of **Py-B18C6** (L, $C_L = 9$ mM) recorded in D₂O solution at different pD in the absence and presence of 2 eq. Zn²⁺, Cd²⁺ and Pb²⁺ (400 MHz, 298 K). See Figure S30 for proton labeling.

	L,	L,	ZnL^{2+} ,	CdL ²⁺ ,
	pD = 9.3	pD = 7.0	pD = 6.6	pD = 7.8
H_1	6.85	6.79	6.98	6.96
H ₂	6.85	6.79	6.98	6.96
H _{4e}	1.06	4 1 4	4.05	4.31
H_{4a}	4.06	4.14	3.88	4.02
H _{5e}	3.03	3.27	3.20	3.09
H_{5a}			3.05	2.99
H _{6e}	2.87	3.10	3.75	3.52
H_{6a}			2.73	2.89
H _{7e}	3.62	3.72	3.56	3.61
H_{7a}			3.05	2.89
H _{8e}	2 80	4.05	3.75	3.68
H_{8a}	3.80	4.05	3.20	3.09
H_{9x}	3.54	3.58	5.00	4.19
H_{9v}			3.96	3.96
H ₁₁	7.41	7.46	7.57	7.46
H ₁₂	7.68	7.64	8.10	7.93
H ₁₃	7.22	7.14	7.65	7.46
H ₁₄	8.32	8.26	8.82	8.69

X-ray data

Figure S50. Overlay of two symmetry independent cations in structures $[Zn(Py-B15C5)](ClO_4)_2$ and $[Ni(Py-B15C5)](ClO_4)_2$. Hydrogen atoms are omitted for clarity.

[Cu ₂ (Py-B18C6)(OH) ₂](ClO ₄) ₂		[Cu ₂ (Pic-B18C6)(OH)](ClO ₄)		
C4 O1 C3 C2	-6.8(3)	C4 O1 C3 C2	-8.4(3)	
C4 O1 C3 C14	170.7(2)	C4 O1 C3 C14	170.58(16)	
C3 O1 C4 C5	-164.59(18)	C3 O1 C4 C5	-166.16(17)	
C6 N1 C5 C4	158.9(2)	C6 N1 C5 C4	178.75(16)	
O1 C4 C5 N1	-74.0(2)	O1 C4 C5 N1	-65.8(2)	
C5 N1 C6 C7	-175.4(2)	C5 N1 C6 C7	-47.0(2)	
C8 O2 C7 C6	132.8(2)	C8 O2 C7 C6	176.19(16)	
N1 C6 C7 O2	48.4(3)	N1 C6 C7 O2	-75.5(2)	
C7 O2 C8 C9	-81.2(2)	C7 O2 C8 C9	-176.63(16)	
C10 O3 C9 C8	-171.85(18)	C10 O3 C9 C8	-174.02(16)	
O2 C8 C9 O3	-95.8(2)	O2 C8 C9 O3	79.69(19)	
C9 O3 C10 C11	-91.6(2)	C9 O3 C10 C11	118.0(2)	
C12 N2 C11 C10	172.7(2)	C12 N2 C11 C10	-169.57(17)	
O3 C10 C11 N2	-64.7(3)	O3 C10 C11 N2	61.9(2)	
C11 N2 C12 C13	-164.3(2)	C11 N2 C12 C13	172.04(15)	
C14 O4 C13 C12	161.3(2)	C14 O4 C13 C12	-174.52(14)	
N2 C12 C13 O4	73.8(3)	N2 C12 C13 O4	-58.8(2)	
C13 O4 C14 C15	19.8(3)	C13 O4 C14 C15	-18.0(2)	
C13 O4 C14 C3	-160.0(2)	C13 O4 C14 C3	163.15(15)	
O1 C3 C14 O4	-0.7(3)	O1 C3 C14 O4	-2.8(2)	
O1 C3 C14 C15	179.5(2)	O1 C3 C14 C15	178.24(16)	

Table S4. Torsion angles (°) in complexes [Cu₂(Py-B18C6)(OH)₂](ClO₄)₂ and [Cu₂(Pic-B18C6)(OH)]ClO₄.