Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supporting Information

Copper-catalyzed oxidative cleavage of Passerini and Ugi adducts in basic

medium yielding α-ketoamides

Anirban Ghoshal,^{a,b,c} Mayur D. Ambule,^{a,b} Revoju Sravanthi,^c Mohit Taneja^c and Ajay

Kumar Srivastava*,a,b

^aDivision of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, UP, India

^bChemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India

[°]Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India

Table of Contents

1.	Optimization studies for oxidative cleavage of Ugi adducts	S2
2.	Labeling experiments	S3-S8
3.	Kinetic Isotope Effect (KIE) measurement by independent reactions	S9-S10
4.	References	S10
5.	Copies of ¹ H and ¹³ C NMR spectra	S11-S98

1. Optimization studies for oxidative cleavage of Ugi adducts

Table S1. Optimization of the reaction conditions^{*a*}

Entry	Base	Additive (mol %)	Solvent	Time (h)	Conversion (%)	2a; yield (%) ^c	4a ; yield (%) ^c
1	NaH		THF	12	5	trace	trace
2	NaH	CuI (5)	THF	2	11	trace	trace
3	NaH	CuI (10)	THF	2	50	35	60
4	NaH	CuI (20)	THF	2	15	5	20
5	NaH	CuI (20)	CH ₃ CN	2	20	15	38
6	NaH	CuI (20)	DMF	4	90	50	30
7	KO ^t Bu		THF	12	75	41	52
8	KO ^t Bu	CuI (5)	THF	2	11	trace	trace
9	KO ^t Bu	CuI (10)	THF	2	81	50	67
10	KO ^t Bu	CuI (20)	THF	2	83	65	50
11	KO ^t Bu	CuI (20)	CH ₃ CN	0.5	100	81	53
12	KO ^t Bu	CuI (20)	DMSO	4	30	15	35
13	KO ^t Bu	CuI (20)	DMF	4	93	55	45
14^{b}	KO ^t Bu	CuI (20)	THF	0.5	5	trace	trace

^{*a*}Reaction Conditions: **1a** (0.1 mmol), base (0.3 mmol), CuI in solvent (2.0 mL) at rt under oxygen balloon. ^{*b*}Under argon. ^{*c*}Isolated yields.

2. Labeling Experiments

a) Preparation of 4-Methoxybenzaldehyde-a-D

4-Methoxybenzaldehyde- α -D was synthesized according to reported procedure.¹ 4-Methoxybenzaldehyde (100.0 mg, 0.734 mmol) and RuHCl(CO)(PPh₃)₃ (34.9 mg, 0.036 mmol, 5 mol %) were dissolved in toluene (3.0 ml) in an oven-dried screw-cap vial. D₂O (0.07 ml, 3.670 mmol) was then added and the vial was sparged with argon and capped. The resulting solution was heated to 100 °C and stirred for 30 minutes. On completion of the reaction, the solvent was removed *in vacuo* and crude was purified by column chromatography to afford **4-Methoxybenzaldehyde-\alpha-D** as colourless oil (80.0 mg, 79% yield, 55% D); ¹H NMR (400 MHz, CDCl₃): 7.89 – 7.80 (m, 2H), 7.04 – 6.98 (m, 2H), 3.89 (s, 3H); residual formyl proton: δ 9.89.

b) Preparation of the deuterated Passerini adduct D-1d

Equimolar mixture of 4-Methoxybenzaldehyde-α-D (200.0 mg, 1.45 mmol), benzoic acid (194.5 mg, 1.59 mmol) and *tert*-butyl isocyanide (0.16 ml, 1.45 mmol) in water was stirred at room temperature for 12 h. After completion of the reaction (based on TLC), reaction mixture was diluted with ethyl acetate and washed with saturated sodium bicarbonate solution. Aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over anhydrous sodium sulfate followed by evaporation of solvent *in vacuo*. The crude was

purified by silica gel column chromatography to afford the deuterium-labeled Passerini adduct **D-1d** as a white sticky solid (134.0 mg, 27% yield, 65% D); ¹H NMR (300 MHz, CDCl₃): δ 8.07 (dt, J = 8.5, 1.6 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.50 – 7.41 (m, 4H), 6.95 – 6.87 (m, 2H), 5.96 (s, 1H), 3.80 (s, 3H), 1.37 (s, 9H); Residual formyl proton: δ 6.17.

c) Preparation of ¹⁸O-labeled benzaldehyde

¹⁸O-labeled benzaldehyde was synthesized according to reported procedure.² Sodium (0.05 g, 2.17 mmol) was added to ¹⁸O-labeled water (98% H₂¹⁸O, 0.75 mL) in a flask followed by the addition of benzyl chloride (0.5 mL, 4.34 mmol). The mixture was heated to 95 °C and then heated at reflux for 48 h with continuous stirring. The product was purified by column chromatography to yield the ¹⁸O-labeled benzyl alcohol (0.2 g, 1.8 mmol, 83% yield). To a solution of the ¹⁸O-labeled benzyl alcohol (0.2 g, 1.8 mmol) in anhydrous dichloromethane (20.0 mL) under nitrogen, Dess-Martin periodinane (0.99 g, 2.34 mmol) was added at 0 °C, and the resulting mixture was stirred at room temperature for 30 minutes. On completion of the reaction (progress monitored by TLC analysis), the reaction was quenched by the slow addition of NaHCO₃/Na₂S₂O₃ solution, and the mixture was vigorously stirred for 30 minutes. The aqueous layer was extracted with dichloromethane and the combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford the ¹⁸O-labeled benzaldehyde in quantitative yield.

d) Preparation of ¹⁸O-labeled benzoic acid

¹⁸O-labeled benzoic acid was synthesized according to reported procedure.³ α, α, α trichlorotoluene (2.5 g, 12.5 mmol) and H₂¹⁸O (1.0 g, 50.0 mmol) were heated at 120 °C in a sealed tube for 24 h. The reaction mixture was concentrated *in vacuo* to remove excess water and HCl, then a solution of NaOH (0.15 M, 75 mL) was added to the crude mixture. The aqueous phase was washed with ethyl acetate, acidified with an aqueous HCl (1 N) solution and extracted with dichloromethane. The combined organic layers were dried upon anhydrous Na₂SO₄, filtered, concentrated *in vacuo* to afford ¹⁸O-enriched benzoic acid (1.5 g, yield: 99%) as white solid.

e) Procedure for the synthesis of ¹⁸O-labeled Passerini adduct ¹⁸O-1b.

Equimolar mixture of ¹⁸O-labeled benzaldehyde (200.00 mg, 1.85 mmol), ¹⁸O-labeled benzoic acid (233.29 mg, 1.85 mmol) and *tert*-butyl isocyanide (0.21 mL, 1.85 mmol) in anhydrous dichloromethane was stirred at room temperature for 12 h under nitrogen. After completion of the reaction (based on TLC), reaction mixture was diluted with dichloromethane and washed with saturated sodium bicarbonate solution. Aqueous layer was extracted with dichloromethane and the combined organic layers were dried over anhydrous sodium sulfate followed by evaporation of solvent *in vacuo*. The crude was purified by silica

gel column chromatography to afford the ¹⁸O-labeled Passerini adduct ¹⁸O-1b (240.00 mg, 40.8%). Isotopic distribution amounted to 70.92% $^{18}O/^{18}O/^{18}O$ and 29.08% $^{18}O/^{18}O/^{16}O$ respectively (Figure S1).

2-(*tert*-butylamino)-2-(oxo-¹⁸*O*)-1-phenylethyl benzoate-¹⁸*O*₂ (¹⁸O-1b): White solid (240.0 mg, 41%); m.p : 140 °C; $R_f = 0.32$ (30% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃): δ 8.12 – 8.06 (m, 2H), 7.64 – 7.57 (m, 1H), 7.55 – 7.44 (m, 4H), 7.43 – 7.34 (m, 3H), 6.22 (s, 1H), 5.99 (s, 1H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 167.3, 164.8, 135.9, 133.5, 129.7, 129.4, 128.9, 128.7, 128.6, 127.4, 76.0, 51.6, 28.7; HRMS (ESI): calcd. for $C_{19}H_{22}N^{18}O_3$ [M+H]⁺: 318.1727, found: 318.1717.

Figure S1: HRMS Spectrum of ¹⁸O-1b

f) Procedure for the oxidative cleavage of ¹⁸O-1b.

To the solution of ¹⁸O-1b (193.0 mg, 0.608 mmol) in dry THF was added KO'Bu (204.7 mg, 1.82 mmol) and CuI (23.1 mg, 20 mol %) at room temperature and the reaction vessel was flushed with O₂. The resulting reaction mixture was stirred at room temperature. After completion of the reaction (based on TLC) in 10 minutes, the reaction mixture was quenched with water and the crude product was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo and the crude was purified by silica gel column chromatography to afford α -ketoamide ¹⁸O-2b (34.0 mg, 27%). The aqueous layer was acidified with HCl solution up to pH 2-3, followed by extraction with dichloromethane. The organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo to afford the ¹⁸O-labeled benzoic acid ¹⁸O-2b' (29.0 mg, 38%). HRMS analysis revealed that the α -ketoamide ¹⁸O-2b (having only C-1 oxygen labeled) has m/z = 208.1217, while the ¹⁸O-labeled benzoic acid has m/z = 127.9792. This indicates that the oxygen at C-2 position of the α -ketoamide ¹⁸O-2b is coming from molecular oxygen. On the contrary, this experiment also confirmed the incorporation of only one ¹⁶O oxygen atom in the α -ketoamide ¹⁸O-2b. For α -ketoamide ¹⁸O-2b, isotopic distribution amounted to 90.9% ¹⁶O/¹⁸O and 9.09% ¹⁶O/¹⁶O (Figure S2). For the acid ¹⁸O-2b', isotopic distribution amounted to 51.02% ¹⁸O/¹⁸O, 23.98% ¹⁸O/¹⁶O and 25% ¹⁶O/¹⁶O (Figure S3).

Figure S2: HRMS Spectrum of ¹⁸O-2b

Figure S3: HRMS Spectrum of ¹⁸O-2b'

3. Kinetic Isotope Effect (KIE) measurement by independent reactions

The aerobic oxidative cleavage of substrate **1d** and **D-1d** (65% D-enriched) were carried out in parallel under the standard reaction conditions to study the kinetic isotopic effect (KIE). To the solutions of **1d** (100.0 mg, 0.29 mmol) and **D-1d** (100.0 mg, 0.29 mmol) in dry THF, KO'Bu (98.6 mg, 0.87 mmol) and CuI (11.1 mg, 0.058 mmol) were added at room temperature and the reaction vessel was flushed with O₂. The resulting reaction mixtures were stirred at room temperature. KIE value was determined by comparison of rates of formation of α -ketoamide by LCMS analysis. Aliquots (25 µL) were periodically removed to provide the following conversions as determined by LCMS analysis. K_H/K_D was calculated to be 3.14.

<i>t</i> (min)	1	3	5	10
1d (%)	13.67	14.09	15.79	18.93
D-1d [#] (%)	3.71	4.52	5.08	5.58

Table S2. % Formation vs time table.

[#]The product formation was calibrated by multiplying with 0.65 taking into the account that only 65% substrate was D-labeled.

Figure S4. Kinetic Isotope Effect

4. References:

- E. S. Isbrandt, J. K. Vandavasi, W. Zhang, M. P. Jamshidi and S. G Newman, *Synlett*. 2017, 28, 2851.
- C. Du, X. Wang, S. Jin, H. Shi, Y. Li, Y. Pang, Y. Liu, M. Cheng, C. Guo and Y. Liu, Asian J. Org. Chem. 2016, 5, 755.
- C.-H. Lei, L. Zhao, D.-X. Wang, J. Zhu and M.-X Wang, Org. Chem. Front. 2014, 1, 909.

5. Copies of ¹H and ¹³C NMR Spectra

Figure S5: ¹H NMR of compound 1a

Figure S7: ¹H NMR of compound 1b

Figure S9: ¹H NMR of compound 1c

Figure S11: ¹H NMR of compound 1d

Figure S13: ¹H NMR of compound 1e

Figure S15: ¹H NMR of compound 1f

Figure S16: ¹³C NMR of compound 1f

Figure S17: ¹H NMR of compound 1g

Figure S19: ¹H NMR of compound 1h

Figure S20: ¹³C NMR of compound 1h

Figure S21: ¹H NMR of compound 1i

Figure S23: ¹H NMR of compound 1j

Figure S25: ¹H NMR of compound 1k

Figure S27: ¹H NMR of compound 11

Figure S29: ¹H NMR of compound 1m

Figure S31: ¹H NMR of compound 1n

88.88 88.15 88.15 88.15 88.15 88.15 88.15 88.15 88.15 77.55 77.75 77.75 77.55 77.75 77.55 77.75 77.55 77.75 77.55 77.75 77.55 77.75 77.55 77.75 77.55 77.75 77.55 77.75

Figure S32: ¹³C NMR of compound 1n

Figure S33: ¹H NMR of compound 2a

Figure S35: ¹H NMR of compound 2b

Figure S37: ¹H NMR of compound 2c

Figure S39: ¹H NMR of compound 2d

Figure S41: ¹H NMR of compound 2e

Figure S43: ¹H NMR of compound 2f

Figure S45: ¹H NMR of compound 2g

Figure S47: ¹H NMR of compound 2h

Figure S49: ¹H NMR of compound 2i

Figure S51: ¹H NMR of compound 2j

Figure S53: ¹H NMR of compound 2k

Figure S55: ¹H NMR of compound 2k'

Figure S57: ¹H NMR of compound 2l'

Figure S59: ¹H NMR of compound 2m'

Figure S61: ¹H NMR of compound 2n

Figure S63: ¹H NMR of compound 20

Figure S65: ¹H NMR of compound 2p

Figure S67: ¹H NMR of compound 2q

Figure S69: ¹H NMR of compound 2r

Figure S71: ¹H NMR of compound 2s

Figure S73: ¹H NMR of compound 2t

Figure S75: ¹H NMR of compound 2u

Figure S77: ¹H NMR of compound 2v

Figure S79: ¹H NMR of compound 2w

Figure S81: ¹H NMR of compound 2x

Figure S83: ¹H NMR of compound 2y

Figure S85: ¹H NMR of compound 2z

Figure S87: ¹H NMR of compound 2aa

Figure S89: ¹H NMR of compound 2ab

Figure S91: ¹H NMR of compound 2ac

Figure S93: ¹H NMR of compound 2ad

Figure S95: ¹H NMR of compound 2ae

Figure S97: ¹H NMR of compound 3a

Figure S99: ¹H NMR of compound 3b

Figure S101: ¹H NMR of compound 3c

Figure S103: ¹H NMR of compound 3d

Figure S105: ¹H NMR of compound 3e

Figure S107: ¹H NMR of compound 3f

Figure S109: ¹H NMR of compound 3g

Figure S113: ¹H NMR of compound 3i

Figure S115: ¹H NMR of compound 3j

Figure S117: ¹H NMR of compound 3k

Figure S119: ¹H NMR of compound 31

Figure S121: ¹H NMR of compound 3m

Figure S123: ¹H NMR of compound 3n

Figure S125: ¹H NMR of compound 30

Figure S127: ¹H NMR of compound 3p

Figure S129: ¹H NMR of compound 3q

Figure S133: ¹H NMR of compound 3s

Figure S135: ¹H NMR of compound 3t

Figure S139: ¹H NMR of compound 4a

Figure S141: ¹H NMR of compound 4b

Figure S143: ¹H NMR of compound 4c

Figure S145: ¹H NMR of compound 4d

Figure S147: ¹H NMR of compound 5a

Figure S149: ¹H NMR of compound 5b

Figure S153: ¹H NMR of compound 6a

Figure S155: ¹H NMR of compound 6b

Figure S157: ¹H NMR of compound 6c

80 70 60 50

40 30 20 10 0 -10

130 120 110 100 90 f1 (ppm)

160 150

140

210

200

190 180

170

Figure S159: ¹H NMR of compound 8a

Figure S161: ¹H NMR of compound 9b

Figure S163: ¹H NMR of compound 10

Figure S165: ¹H NMR of compound 11a

Figure S167: ¹H NMR of compound 11b

Figure S171: ¹H NMR of compound 11d

Figure S173: ¹H NMR of compound 11e

Figure S175: ¹H NMR of compound 11f

Figure S177: ¹H NMR of 4-Methoxybenzaldehyde-α-D

