Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Two mixed-ligand Cd(II)-organic frameworks with unique topologies:

Selective luminescent sensing of TNP and Cu²⁺ ions with recyclable

performances

Jinfang Zhang^{a,*}, Wen Jia^a, Junjie Wu^a, Guodong Tang^b, Chi Zhang^{a,*}

^a International Joint Research Center for Photoresponsive Molecules and Materials, School of

Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

^b Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University,

Huaian 223300, P. R. China

Table of contents

- 1. Fig. S1 The asymmetric unit of 1 (a) and 2 (b).
- Fig. S2 3-D packing diagram of 2 viewed approximately along the *a* axis (a) and *b* axis (b).
- 3. Fig. S3 The PXRD patterns of 1 (a) and 2 (b).
- 4. Fig. S4 PXRD patterns of 1 in different situations.
- 5. Fig. S5 Thermogravimetric analysis of 1 and 2.
- 6. Fig. S6-S10 Emission spectra of 1 dispersed in DMF with the addition of different NACs solutions (5 mM) ($\lambda_{ex} = 357$ nm).
- **7.** Fig. S11-S16 Stern-Volmer plots for different NACs of 1 in DMF suspension at the low concentration (0-0.020 mM).
- 8. Fig. S17-S22 The detection limits for different NACs of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).
- **9.** Fig. S23 Spectral overlap between the absorption spectra of 1,3-DNB, 2,4-DNT, 4-NP, 4-NT, NB, TNP and the emission spectra of **1** in DMF and H₂O media.
- 10. Fig. S24 Emission spectra of 1 in aqueous solutions of different cations ($\lambda_{ex} = 357$ nm).
- 11. Fig. S25 Emission spectra of 1 in aqueous solutions of mixed cations. The concentrations of Cu^{2+} and other anions were 2 mM, respectively ($\lambda_{ex} = 357$ nm).
- 12. Fig. S26 The IR spectra of 1 before and after detection of Cu^{2+} .
- 13. Table S1 Selected bond lengths (\AA) and angles (deg) for 1 and 2.
- 14. Table S2 The ICP results of 1@CuCl₂.

Fig. S1 The asymmetric unit of **1** (a) and **2** (b). All H atoms are omitted for clarity. Colour code: Cd green, C grey, O red, N blue.

Fig. S2 3-D packing diagram of **2** viewed approximately along the *b* axis (a) and *c* axis (b). All H atoms are omitted for clarity. Colour code: Cd green, C grey, O red, N blue.

Fig. S3 The PXRD patterns of 1 (a) and 2 (b).

Fig. S4 PXRD patterns of 1 in different situations.

Fig. S5 Thermogravimetric analysis of 1 and 2.

Fig. S6 Emission spectra of 1 dispersed in DMF with the addition of 4-NP solution (5 mM) ($\lambda_{ex} = 357$ nm).

Fig. S7 Emission spectra of 1 dispersed in DMF with the addition of 2,4-DNT solution (5 mM) ($\lambda_{ex} = 357$ nm).

Fig. S8 Emission spectra of 1 dispersed in DMF with the addition of NB solution (5 mM) ($\lambda_{ex} = 357$ nm).

Fig. S9 Emission spectra of 1 dispersed in DMF with the addition of 4-NT solution (5 mM) ($\lambda_{ex} = 357$ nm).

Fig. S10 Emission spectra of 1 dispersed in DMF with the addition of 1,3-DNB solution (5 mM) ($\lambda_{ex} = 357$ nm).

Fig. S11 Stern-Volmer plot for TNP of **1** in DMF suspension at the low concentration (0-0.020 mM).

Fig. S12 Stern-Volmer plot for 4-NP of **1** in DMF suspension at the low concentration (0-0.020 mM).

Fig. S13 Stern-Volmer plot for 2,4-DNT of **1** in DMF suspension at the low concentration (0-0.020 mM).

Fig. S14 Stern-Volmer plot for NB of **1** in DMF suspension at the low concentration (0-0.020 mM).

Fig. S15 Stern-Volmer plot for 4-NT of 1 in DMF suspension at the low concentration

Fig. S16 Stern-Volmer plot for 1,3-DNB of **1** in DMF suspension at the low concentration (0-0.020 mM).

Fig. S17 The LOD for TNP of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S18 The LOD for 4-NP of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S19 The LOD for 2,4-DNT of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S20 The LOD for NB of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S21 The LOD for 4-NT of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S22 The LOD for 1,3-DNB of 1 in DMF suspension was calculated with $3\sigma/k$ (k: slope, σ : standard) at the low concentration (0-0.020 mM).

Fig. S23 Spectral overlap between the absorption spectra of 1,3-DNB, 2,4-DNT, 4-NP, 4-NT, NB, TNP and the emission spectra of **1** in DMF and H₂O media.

Fig. S24 Emission spectra of 1 in aqueous solutions of different cations ($\lambda_{ex} = 357$ nm).

Fig. S25 Emission spectra of 1 in aqueous solutions of mixed cations. The concentrations of Cu^{2+} and other anions were 2 mM, respectively ($\lambda_{ex} = 357$ nm).

Fig. S26 The IR spectra of 1 before and after detection of Cu^{2+} .

Bond	Lengths (Å)	Bond	Angles (°)
1			
Cd(1)-N(2)	2.314(2)	N(2)-Cd(1)-O(6)	153.10(8)
Cd(1)-O(6)	2.354(2)	N(2)-Cd(1)-O(4)	87.95(7)
Cd(2)-O(3)	2.293(2)	O(13)#1-Cd(1)-N(2)	87.30(8)
Cd(2)-O(1)	2.410(2)	O(1)-Cd(1)-O(13)#1	105.50(7)
Cd(1)-N(1)	2.410(2)	O(1)-Cd(1)-O(4)	79.67(7)
Cd(1)-O(4)	2.3176(19)	O(1)-Cd(1)-O(6)	91.52(7)
Cd(1)-O(1)	2.2496(19)	O(4)-Cd(1)-O(6)	89.80(7)
Cd(1)-O(13)#1	2.2868(19)	N(2)-Cd(1)-N(1)	70.32(8)
O(1)-Cd(1)-N(1)	159.92(8)	O(1)-Cd(1)-N(2)	114.38(8)
2			
O(4)-Cd(3)#4	2.467(4)	N(5B)#1-Cd(1)-O(1)	139.2(7)
Cd(1)-O(5)#2	2.262(4)	N(4A)-Cd(2)-N(1A)	71.0(2)
O(1)-Cd(2)	2.440(4)	O(3)-Cd(2)-O(9)#5	82.86(14)
Cd(2)-N(4A)	2.208(6)	O(1)-Cd(1)-O(2)	52.15(13)
Cd(2)-O(9)#5	2.335(4)	O(5)#2-Cd(1)-O(2)	79.95(17)
O(8)-Cd(3)	2.155(4)	O(12)#3-Cd(1)-O(1)	127.02(16)
Cd(1)-O(2)	2.623(5)	O(5)#2-Cd(1)-O(1)	97.00(15)
O(9)-Cd(3)	2.374(4)	N(6B)#1-Cd(1)-O(1)	76.9(5)
Cd(2)-O(3)	2.229(4)	O(12)#3-Cd(1)-O(2)	82.19(15)
Cd(1)-O(12)#3	2.304(5)	O(3)-Cd(2)-N(1B)	104.0(5)
Cd(1)-O(1)	2.336(4)	O(3)-Cd(2)-N(1A)	92.4(2)

Table S1 Selected bond lengths (\AA) and angles (deg) for 1 and 2.

Symmetry transformations used to generate equivalent atoms: **1**: #1 -x-1/2, y-1/2, -z-1/2. **2**: #1 -x, -y, -z+1; #2 -x+1, -y, -z+1; #3 -x+1, -y, -z; #4 x-1, y, z; #5 -x+1, -y+1, -z.

Sample	Concentration/(mg/kg)	Determined ion
1@CuCl ₂	175424	Cd^{2+}
1@CuCl ₂	176271	Cd^{2+}
1@CuCl ₂	1864	Cu^{2+}
1@CuCl ₂	1856	Cu^{2+}

Table S2 The ICP results of 1@CuCl2 (50 mg compound soaked in 2 mL of 2 mMCuCl2 for 24 hours).

Results analysis:

the ratio of Cd^{2+} : Cu^{2+} in **1@CuCl₂** : [(175424+176271)/2] : [(1864+1856)/2] = 94.54 : 1