Supporting Information

Two mixed-ligand $\mathbf{C d}(\mathbf{I I})$-organic frameworks with unique topologies:

Selective luminescent sensing of TNP and $\mathbf{C u}^{2+}$ ions with recyclable performances

Jinfang Zhang ${ }^{\text {a,* }}$, Wen Jia ${ }^{\text {a }}$, Junjie Wu ${ }^{\text {a }}$, Guodong Tang ${ }^{\text {b }}$, Chi Zhanga,*
${ }^{a}$ International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

[^0]Huaian 223300, P. R. China

Table of contents

1. Fig. S1 The asymmetric unit of $\mathbf{1}$ (a) and $\mathbf{2}$ (b).
2. Fig. S2 3-D packing diagram of $\mathbf{2}$ viewed approximately along the a axis (a) and b axis (b).
3. Fig. S3 The PXRD patterns of $\mathbf{1}$ (a) and $\mathbf{2}$ (b).
4. Fig. S4 PXRD patterns of $\mathbf{1}$ in different situations.
5. Fig. S5 Thermogravimetric analysis of $\mathbf{1}$ and 2.
6. Fig. S6-S10 Emission spectra of $\mathbf{1}$ dispersed in DMF with the addition of different NACs solutions $(5 \mathrm{mM})\left(\lambda_{\mathrm{ex}}=357 \mathrm{~nm}\right)$.
7. Fig. S11-S16 Stern-Volmer plots for different NACs of $\mathbf{1}$ in DMF suspension at the low concentration $(0-0.020 \mathrm{mM})$.
8. Fig. S17-S22 The detection limits for different NACs of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / \mathrm{k}$ (k : slope, σ : standard) at the low concentration ($0-0.020$ mM).
9. Fig. S23 Spectral overlap between the absorption spectra of $1,3-\mathrm{DNB}, 2,4-\mathrm{DNT}$, 4-NP, 4-NT, NB, TNP and the emission spectra of $\mathbf{1}$ in DMF and $\mathrm{H}_{2} \mathrm{O}$ media.
10. Fig. S24 Emission spectra of $\mathbf{1}$ in aqueous solutions of different cations ($\lambda_{\text {ex }}=357$ $\mathrm{nm})$.
11. Fig. S25 Emission spectra of $\mathbf{1}$ in aqueous solutions of mixed cations. The concentrations of Cu^{2+} and other anions were 2 mM , respectively ($\lambda_{\mathrm{ex}}=357 \mathrm{~nm}$).
12. Fig. S26 The IR spectra of $\mathbf{1}$ before and after detection of Cu^{2+}.
13. Table S1 Selected bond lengths (\AA) and angles (deg) for $\mathbf{1}$ and $\mathbf{2}$.
14. Table S2 The ICP results of $\mathbf{1} @ \mathbf{C u C l}_{2}$.

(b)

Fig. S1 The asymmetric unit of 1 (a) and 2 (b). All H atoms are omitted for clarity. Colour code: Cd green, C grey, O red, N blue.

Fig. S2 3-D packing diagram of 2 viewed approximately along the b axis (a) and c axis (b). All H atoms are omitted for clarity. Colour code: Cd green, C grey, O red, N blue.

Fig. $\mathbf{S 3}$ The PXRD patterns of $\mathbf{1}$ (a) and $\mathbf{2}$ (b).

Fig. S4 PXRD patterns of $\mathbf{1}$ in different situations.

Fig. S5 Thermogravimetric analysis of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S6 Emission spectra of $\mathbf{1}$ dispersed in DMF with the addition of 4-NP solution (5 $\mathrm{mM})\left(\lambda_{\mathrm{ex}}=357 \mathrm{~nm}\right)$.

Fig. S7 Emission spectra of $\mathbf{1}$ dispersed in DMF with the addition of 2,4-DNT solution $(5 \mathrm{mM})\left(\lambda_{\mathrm{ex}}=357 \mathrm{~nm}\right)$.

Fig. S8 Emission spectra of $\mathbf{1}$ dispersed in DMF with the addition of NB solution (5 $\mathrm{mM})\left(\lambda_{\mathrm{ex}}=357 \mathrm{~nm}\right)$.

Fig. S9 Emission spectra of 1 dispersed in DMF with the addition of 4-NT solution (5 $\mathrm{mM})\left(\lambda_{\mathrm{ex}}=357 \mathrm{~nm}\right)$.

Fig. S10 Emission spectra of $\mathbf{1}$ dispersed in DMF with the addition of 1,3-DNB solution $(5 \mathrm{mM})\left(\lambda_{\text {ex }}=357 \mathrm{~nm}\right)$.

Fig. S11 Stern-Volmer plot for TNP of $\mathbf{1}$ in DMF suspension at the low concentration ($0-0.020 \mathrm{mM}$).

Fig. S12 Stern-Volmer plot for 4-NP of $\mathbf{1}$ in DMF suspension at the low concentration (0-0.020 mM).

Fig. S13 Stern-Volmer plot for 2,4-DNT of $\mathbf{1}$ in DMF suspension at the low concentration ($0-0.020 \mathrm{mM}$).

Fig. S14 Stern-Volmer plot for NB of $\mathbf{1}$ in DMF suspension at the low concentration (0-0.020 mM).

Fig. S15 Stern-Volmer plot for 4-NT of $\mathbf{1}$ in DMF suspension at the low concentration
(0-0.020 mM).

Fig. S16 Stern-Volmer plot for 1,3-DNB of $\mathbf{1}$ in DMF suspension at the low concentration ($0-0.020 \mathrm{mM}$).

Fig. S17 The LOD for TNP of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / k$ (k : slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S18 The LOD for 4-NP of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / k$ (k : slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S19 The LOD for 2,4-DNT of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / \mathrm{k}$ (k : slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S20 The LOD for NB of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / \mathrm{k}$ (k: slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S21 The LOD for 4-NT of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / k$ (k : slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S22 The LOD for 1,3-DNB of $\mathbf{1}$ in DMF suspension was calculated with $3 \sigma / \mathrm{k}$ (k : slope, σ : standard) at the low concentration $(0-0.020 \mathrm{mM})$.

Fig. S23 Spectral overlap between the absorption spectra of 1,3-DNB, 2,4-DNT, 4-NP, 4-NT, NB, TNP and the emission spectra of $\mathbf{1}$ in DMF and $\mathrm{H}_{2} \mathrm{O}$ media.

Fig. S24 Emission spectra of $\mathbf{1}$ in aqueous solutions of different cations ($\lambda_{\mathrm{ex}}=357$ $\mathrm{nm})$.

Fig. S25 Emission spectra of $\mathbf{1}$ in aqueous solutions of mixed cations. The concentrations of Cu^{2+} and other anions were 2 mM , respectively ($\lambda_{\mathrm{ex}}=357 \mathrm{~nm}$).

Fig. S26 The IR spectra of $\mathbf{1}$ before and after detection of Cu^{2+}.

Table S1 Selected bond lengths (\AA) and angles (deg) for $\mathbf{1}$ and 2.

Bond	$\text { Lengths }(\AA)$	Bond	Angles (${ }^{\circ}$)
1			
$\mathrm{Cd}(1)-\mathrm{N}(2)$	2.314(2)	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(6)$	153.10(8)
$\mathrm{Cd}(1)-\mathrm{O}(6)$	2.354(2)	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(4)$	87.95(7)
$\mathrm{Cd}(2)-\mathrm{O}(3)$	2.293(2)	$\mathrm{O}(13) \# 1-\mathrm{Cd}(1)-\mathrm{N}(2)$	$87.30(8)$
$\mathrm{Cd}(2)-\mathrm{O}(1)$	$2.410(2)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(13) \# 1$	105.50(7)
$\mathrm{Cd}(1)-\mathrm{N}(1)$	2.410(2)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(4)$	79.67(7)
$\mathrm{Cd}(1)-\mathrm{O}(4)$	2.3176 (19)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(6)$	91.52(7)
$\mathrm{Cd}(1)-\mathrm{O}(1)$	2.2496 (19)	$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(6)$	89.80(7)
$\mathrm{Cd}(1)-\mathrm{O}(13) \# 1$	$2.2868(19)$	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(1)$	70.32(8)
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(1)$	159.92(8)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(2)$	114.38(8)
2			
$\mathrm{O}(4)-\mathrm{Cd}(3) \# 4$	2.467(4)	$\mathrm{N}(5 \mathrm{~B}) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	139.2(7)
$\mathrm{Cd}(1)-\mathrm{O}(5) \# 2$	2.262(4)	$\mathrm{N}(4 \mathrm{~A})-\mathrm{Cd}(2)-\mathrm{N}(1 \mathrm{~A})$	71.0(2)
$\mathrm{O}(1)-\mathrm{Cd}(2)$	2.440(4)	$\mathrm{O}(3)-\mathrm{Cd}(2)-\mathrm{O}(9) \# 5$	82.86(14)
$\mathrm{Cd}(2)-\mathrm{N}(4 \mathrm{~A})$	2.208(6)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	52.15(13)
$\mathrm{Cd}(2)-\mathrm{O}(9) \# 5$	2.335(4)	$\mathrm{O}(5) \# 2-\mathrm{Cd}(1)-\mathrm{O}(2)$	79.95(17)
$\mathrm{O}(8)-\mathrm{Cd}(3)$	2.155(4)	$\mathrm{O}(12) \# 3-\mathrm{Cd}(1)-\mathrm{O}(1)$	127.02(16)
$\mathrm{Cd}(1)-\mathrm{O}(2)$	2.623(5)	$\mathrm{O}(5) \# 2-\mathrm{Cd}(1)-\mathrm{O}(1)$	97.00(15)
$\mathrm{O}(9)-\mathrm{Cd}(3)$	2.374(4)	$\mathrm{N}(6 \mathrm{~B}) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	$76.9(5)$
$\mathrm{Cd}(2)-\mathrm{O}(3)$	2.229(4)	$\mathrm{O}(12) \# 3-\mathrm{Cd}(1)-\mathrm{O}(2)$	82.19(15)
$\mathrm{Cd}(1)-\mathrm{O}(12) \# 3$	2.304(5)	$\mathrm{O}(3)-\mathrm{Cd}(2)-\mathrm{N}(1 \mathrm{~B})$	104.0(5)
$\mathrm{Cd}(1)-\mathrm{O}(1)$	2.336(4)	$\mathrm{O}(3)-\mathrm{Cd}(2)-\mathrm{N}(1 \mathrm{~A})$	92.4(2)

Symmetry transformations used to generate equivalent atoms: 1: \#1-x-1/2, y-1/2, -z-1/2. 2: \#1-x, $-\mathrm{y},-\mathrm{z}+1 ;$ \#2 -x+1, -y, -z+1; \#3-x+1, -y, -z; \#4 x-1, y, z; \#5 -x+1, -y+1, -z.

Table S2 The ICP results of $\mathbf{1} @ \mathbf{C u C l}_{\mathbf{2}}$ (50 mg compound soaked in 2 mL of $\mathbf{2} \mathbf{m M}$ CuCl_{2} for 24 hours).

Sample	Concentration/(mg/kg)	Determined ion
$\mathbf{1 @ \mathbf { C u C l } _ { \mathbf { 2 } }}$	175424	Cd^{2+}
$\mathbf{1} @ \mathbf{C u C l}_{\mathbf{2}}$	176271	Cd^{2+}
$\mathbf{1} @ \mathbf{C u C l}_{\mathbf{2}}$	1864	Cu^{2+}
$\mathbf{1 @} \mathbf{C u C l}_{\mathbf{2}}$	1856	Cu^{2+}

Results analysis:
the ratio of $\mathrm{Cd}^{2+}: \mathrm{Cu}^{2+}$ in $\mathbf{1} @ \mathbf{C u C l}_{2}:[(175424+176271) / 2]:[(1864+1856) / 2]=94.54: 1$

[^0]: ${ }^{b}$ Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University,

