Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPORTING INFORMATION

Ionic Liquid-assisted Synthesis of Dihydropyrimidin(thi)ones Biginelli adducts and investigation of their mechanism of urease inhibition

Taniris C. Braga,^a Thamara F. Silva, ^b Thamilla M. S. Maciel,^c Edjan Carlos Dantas da Silva,^d Edeildo Ferreira da Silva-Júnior, ^d Luzia V. Modolo,^b Isis M. Figueiredo,^c Josué C. C. Santos,^c Thiago Mendonça de Aquino,^d Ângelo de Fátima^{a,*}

^aGrupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

^bGrupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

^cLaboratório de Instrumentação e Desenvolvimento em Química Analítica (LINQA), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil.

^{*d}Núcleo de Análises e Pesquisa em ressonância Magnética Nuclear (NAPRMN), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil.*</sup>

*Corresponding author: Ângelo de Fátima: Tel.: +55-31-3409-6373 / E-mail: <u>adefatima@qui.ufmg.br</u>

Figure S1. Van't Hoff plot for the Biginelli adducts BA5-S and BA7-S with urease.

Figure S2. Overlap of the fluorescence emission of urease (blue, 5 μ M) with the absorption spectrum of (A) **BA5-S** (black, 5 μ M) and (B) **BA7-S** (black, 5 μ M).

Figure S3. Urease (1.0 μ M, pH 7.4) synchronous fluorescence spectra upon addition of increasing concentrations of **BA5-S**, monitoring (A) $\Delta\lambda = 15$ nm (Tyr residues) and (B) $\Delta\lambda = 60$ nm (Trp residues), and **BA7-S** monitoring (C) $\Delta\lambda = 15$ nm (Tyr residues) and (D) $\Delta\lambda = 60$ nm (Trp residues).

Figure S4. UV-vis spectra of the Biginelli adducts (A) **BA5-S** and (B) **BA7-S** in the presence and absence of Ni(II) ions with urease. All compounds and Ni(II) ions in, the same concentration at pH 7. The spectrum for Ni(II) solution was baseline.

	free urease			urease + BA5-S			urease + BA 7	urease + BA7-S	
Peak	Position	Stokes ¹	F (a. u.)	Position	Stokes	F (a. u.)	Position	Stokes	F (a. u.)
	$(\lambda_{ex} / \lambda_{em})$	$\Delta\lambda$ (nm)		$(\lambda_{ex} / \lambda_{em})$	$\Delta\lambda$ (nm)		$(\lambda_{ex} / \lambda_{em})$	$\Delta\lambda$ (nm)	
1	$\lambda_{\rm ex} = \lambda_{\rm em}$	0	> 1000	$\lambda_{\rm ex} = \lambda_{\rm em}$	0	> 1000	$\lambda_{\rm ex} = \lambda_{\rm em}$	0	> 1000
2	285 / 339	54	408 (100%) ²	285 / 350	65	194 (47%)	285 / 353	68	115 (28%)
3	238 / 348	110	53 (100%)	238 / 353	115	21 (40%)	238 / 355	117	11 (21%)

Table S1.Tridimensional fluorescence parameters for free urease (pH 7.4) or in the presence of the Biginelli adducts **BA5-S** and **BA7-S**. Protein and ligands were used at 1.0 and 40 μ M, respectively.

¹Stokes shift ($\Delta \lambda = \lambda_{em} - \lambda_{ex}$) ²Numbers in parentheses represent the relative percentage of fluorescence signal. Lower values indicate greater variation in relation to control (urease by itself).

Figure S5. RMSD graphic generated for C_{α} atoms of the jack bean urease.

Figure S6. ¹H spectrum of compound 1-butyl-1*H*-imidazole (BIM) (200 MHz, CDCl₃).

Figure S7. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound 1-butyl-1*H*-imidazole (**BIM**) (50 MHz, CDCl₃).

Figure S8. Infrared spectrum (ATR) of 1-butyl-1*H*-imidazole (BIM).

Figure S9. ¹H spectrum of compound 4-(1-butyl-1*H*-imidazol-3-ium-3-yl)butane-1-sulfonate (**BIMS**) (200 MHz, DMSO- d_{δ}).

Figure S10. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound 4-(1-butyl-1*H*-imidazol-3-ium-3-yl)butane-1-sulfonate (**BIMS**) (50 MHz, DMSO-*d*₆).

Figure S11. Infrared spectrum (ATR) of 4-(1-butyl-1*H*-imidazol-3-ium-3-yl)butane-1-sulfonate (**BIMS**).

Figure S12. ¹H spectrum of compound 1-butyl-3-(4-solfobutyl)-1*H*-imidazol-3-ium chloride (**[BIMS][CI]**) (200 MHz, DMSO-*d*₆).

Figure S13. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound 1-butyl-3-(4-solfobutyl)-1*H*-imidazol-3-ium chloride (**[BIMS][Cl]**) (50 MHz, DMSO-*d*₆).

Figure S14. Infrared spectrum (ATR) of 1-butyl-3-(4-solfobutyl)-1*H*-imidazol-3-ium chloride (**[BIMS][Cl]**).

Figure S15. ¹H spectrum of compound BA1-O (200 MHz, DMSO-*d*₆).

Figure S16. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA1-O** (50 MHz, DMSO- d_6)

Figure S17. Infrared spectrum (KBr) of BA1-O.

Figure S18. ¹H spectrum of compound BA1-S (200 MHz, DMSO-*d*₆).

Figure S19. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA1-S** (50 MHz, DMSO- d_6).

Figure S20. Infrared spectrum (KBr) of BA1-S.

Figure S21. ¹H spectrum of compound BA2-O (400 MHz, DMSO-*d*₆).

Figure S22. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA2-O** (100 MHz, DMSO- d_6).

Figure S23. Infrared spectrum (KBr) of BA2-O.

Figure S24. ¹H spectrum of compound BA2-S (200 MHz, DMSO-*d*₆).

Figure S25. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA2-S** (50 MHz, DMSO- d_6).

Figure S26. Infrared spectrum (KBr) of BA2-S.

Figure S27. ¹H spectrum of compound BA3-O (200 MHz, DMSO-*d*₆).

Figure S28. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA3-O** (50 MHz, DMSO- d_6).

Figure S29. Infrared spectrum (KBr) of BA3-O.

Figure S30. ¹H spectrum of compound BA3-S (200 MHz, DMSO-*d*₆).

Figure S31. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA3-S** (50 MHz, DMSO- d_6).

Figure S32. Infrared spectrum (KBr) of BA3-S.

Figure S33. ¹H spectrum of compound BA4-O (200 MHz, DMSO- d_6).

Figure S34. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA4-O** (50 MHz, DMSO- d_6).

Figure S35. Infrared spectrum (ATR) of BA4-O.

Figure S36. ¹H spectrum of compound BA4-S (200 MHz, DMSO-*d*₆).

Figure S37. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA4-S** (50 MHz, DMSO- d_6).

Figure S38. Infrared spectrum (KBr) of BA4-S.

Figure S39. ¹H spectrum of compound BA5-O (200 MHz, DMSO-*d*₆).

Figure S40. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA5-O** (50 MHz, DMSO- d_6).

Figure S41. Infrared spectrum (KBr) of BA5-O.

Figure S42. ¹H spectrum of compound BA5-S (200 MHz, DMSO-*d*₆).

Figure S43. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA5-S** (50 MHz, DMSO- d_6).

Figure S44. Infrared spectrum (KBr) of BA5-S.

Figure S45. ¹H spectrum of compound BA6-O (200 MHz, DMSO-*d*₆).

Figure S46. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA6-O** (50 MHz, DMSO- d_6)

Figure S47. Infrared spectrum (KBr) of BA6-O.

Figure S48. ¹H spectrum of compound BA6-S (400 MHz, DMSO-*d*₆).

Figure S49. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA6-S** (100 MHz, DMSO-*d*₆).

Figure S50. Infrared spectrum (KBr) of BA6-S.

Figure S51. ¹H spectrum of compound BA7-O (200 MHz, DMSO-*d*₆).

Figure S52. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA7-O** (50 MHz, DMSO- d_6).

Figure S53. Infrared spectrum (KBr) of BA7-O.

Figure S54. ¹H spectrum of compound BA7-S (200 MHz, DMSO-*d*₆).

Figure S55. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA7-S** (50 MHz, DMSO- d_6).

Figure S56. Infrared spectrum (KBr) of BA7-S.

Figure S57. ¹H spectrum of compound BA8-O (400 MHz, DMSO-*d*₆).

Figure S58. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA8-O** (100 MHz, DMSO- d_6).

Figure S59. Infrared spectrum (KBr) of BA8-O.

Figure S60. ¹H spectrum of compound BA8-S (400 MHz, DMSO-*d*₆).

Figure S61. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA8-S** (100 MHz, DMSO- d_6).

Figure S62. Infrared spectrum (KBr) of BA8-S.

Figure S63. ¹H spectrum of compound BA9-O (200 MHz, DMSO- d_6).

Figure S64. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA9-O** (50 MHz, DMSO- d_6)

Figure S65. Infrared spectrum (KBr) of BA9-O.

Figure S66. ¹H spectrum of compound BA9-S (200 MHz, DMSO-*d*₆).

Figure S67. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA9-S** (50 MHz, DMSO- d_6)

Figure S68. Infrared spectrum (KBr) of BA9-S.

Figure S69. ¹H spectrum of compound BA10-O (200 MHz, DMSO-*d*₆).

Figure S70. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA10-O** (50 MHz, DMSO- d_6).

Figure S71. Infrared spectrum (KBr) of BA10-O.

Figure S72. ¹H spectrum of compound BA10-S (400 MHz, DMSO-*d*₆).

Figure S73. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA10-S** (100 MHz, DMSO- d_6).

Figure S74. Infrared spectrum (KBr) of BA10-S.

Figure S75. ¹H spectrum of compound BA11-O (200 MHz, DMSO-*d*₆).

Figure S76. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA11-O** (50 MHz, DMSO- d_6).

Figure S77. Infrared spectrum (KBr) of BA11-O.

Figure S78. ¹H spectrum of compound BA11-S (200 MHz, DMSO-*d*₆).

Figure S79. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA11-S** (50 MHz, DMSO- d_6).

Figure S80. Infrared spectrum (KBr) of BA11-S.

Figure S81. ¹H spectrum of compound BA12-O (400 MHz, DMSO-*d*₆).

Figure S82. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA12-O** (100 MHz, DMSO-*d*₆)

Figure S83. Infrared spectrum (KBr) of compound BA12-O.

Figure S84. ¹H spectrum of compound BA12-S (400 MHz, DMSO- d_6).

Figure S85. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA12-S** (100 MHz, DMSO- d_6).

Figure S86. Infrared spectrum (KBr) of compound BA12-S.

Figure S87. ¹H spectrum of compound BA13-O (200 MHz, DMSO-*d*₆)

Figure S88. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound BA13-O (50 MHz, DMSO- d_6

Figure S89. Infrared spectrum (KBr) of BA13-O.

Figure S90. ¹H spectrum of compound BA13-S (200 MHz, DMSO-*d*₆).

Figure S91. ¹³C spectrum (bottom) and DEPT 135 subspectrum of compound **BA13-S** (50 MHz, DMSO- d_6

Figure S92. Infrared spectrum (KBr) of BA13-S.