Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Visual Detection of H_2O_2 and Melamine based on $PW_{11}MO_{39}^{n-}$ (M = Cu^{2+} , Co^{2+} , Mn^{2+} , Fe^{3+}) and $PW_9M_3O_{34}^{n-}$ (M = Cu^{2+} , Co^{2+} , Mn^{2+} , Fe^{3+})

Yiming Li, Shengtian Wang, Zhijie Tang, Mbage Bawa, Yu Ji, Xiaohong Wang*, Kaizhi

Zhang**

*Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry,

Northeast Normal University, Changchun 130024, P. R. China. E-mail address:

wangxh665@nenu.edu.cn

**Department of Neurosurgery China-Japan Union Hospital of Jilin University,

Changchun 130033, P. R. China. E-mail address: zhangkz@jlu.edu.cn

Fig. S1 The UV-Vis spectra of TMB+H_2O_2, TMB+POMs, POMs+H_2O_2 and $TMB+H_2O_2+PW_{11}Cu$

Fig. S2 The cyclic voltammogram of POMs

Fig. S3 Main parameters for $PW_{11}Cu$ on detection of H_2O_2 . pH (a), time (b), temperature (c), H_2O_2 concentration (d) and catalyst concentration (e). The error bars represent the standard deviation of three measurements.

Fig. S4 Main parameters for PW_9Cu_3 on detection of H_2O_2 . pH (a), time (b), temperature (c), H_2O_2 concentration (d) and catalyst concentration (e). The error bars represent the standard deviation of three measurements.

Fig. S5 The linear calibration plot for H_2O_2 detection based on $PW_{11}Cu$. The error bars represent the standard deviation of three measurements. The error bars represent the standard deviation of three measurements.

Fig. S6 The linear calibration plot for H_2O_2 detection based on PW_9Cu_3 . The error bars represent the standard deviation of three measurements. The error bars represent the standard deviation of three measurements.

Fig. S7 The UV-Vis spectra of $PW_{11}Co$ (a) and $PW_{11}Cu$ (b) in TMB/H₂O₂ in presence or absence of melamine.

Fig. S8 The UV-Vis spectrum of TMB/H $_2O_2$ /melamine.

Fig. S9 The photographs of TMB/H₂O₂/melamine (a), H₂O₂/melamine (b) and TMB/H₂O₂/PW₁₁Co/melamine (c).

(¹H NMR (500 MHz, DMSO-d₆) δ 10.30 (br s, 4H), 6.10 (br s, 6H))

Fig. S12 Main parameters for $PW_{11}Co$ on detection of melamine. pH (a), time (b), temperature (c), H_2O_2 concentration (d) and catalyst concentration (e). The error bars represent the standard deviation of three measurements.

Fig. S13 The color change in TMB/H₂O₂/PW₁₁Co with different concentrations of melamine (TMB/H₂O₂/PW₁₁Co on the left, TMB/H₂O₂/PW₁₁Co/melamine on the right).

Catalysts	Linear	Detection	۳Ц	References
	range (µM)	limit (µM)	μп	
Ag NPs	0.1-1.2	0.01	7.5-9.5	1
Au NPs	0-1	0.0245	6.0-8.0	2
Au NPs	0.75-1.75	0.005	5.8-7.4	3
Ag NPs	0.05-1.4	0.01	8.0	4
Ag NPs C-dots	2-20	0.03	10.5	5
Ag NPs	1.5-12.6	0.317	8.0	6
Cu _{2-x} Se@PSS NPs	0.0047-29.7	0.0012	4.6	7
NT-Au NPs	0.75-5	0.0035	7.0	8
Au NPs	0.39-3.97	0.238	5.2	9
Fe ₃ O ₄ MNPs	0.2-200	0.11	3.5	10
Au NCs	0.5-10.0	0.15	6.0	11
Ag NPs	0.05-1	0.00498	8.0	12
Au NPs-TMB-H ₂ O ₂	0.001-0.8	0.0002	4.5	13
cysteamine-modified Au NPs	0.08-1.6	0.008	4.0	14
label free Ag NPs	4.0-170	2.32	7.0-9.0	15
Au NPs	0.0048-1.6	0.0064	7.0	16
Fe_3O_4 nanoparticles- H_2O_2 -	20400	2	4.0	17
ABTS	2.0-40.0	Z	4.0	τ/
Ag NPs	-	0.8	-	18
PW ₁₁ Co	0.5-10	0.1	2.0-9.0	This work
PW ₁₁ Co/graphene	0.2-8	0.02	2.0-9.0	This work

Table S1 Comparison of different catalysts for the detection of melamine incolorimetric method.

catalyst	H ₂ O ₂ /TMB	H ₂ O ₂ /TMB/ melamine	ΔA
PW ₉ Cu ₃	0.720	0.721	0.001
PW ₉ Co ₃	0.341	0.343	0.002
PW_9Fe_3	0.248	0.258	0.010
PW ₉ Mn ₃	0.068	0.081	0.013
PW ₁₁ Cu	0.609	0.629	0.020
PW ₁₁ Co	0.556	0.706	0.149
PW ₁₁ Fe	0.236	0.251	0.015
PW ₁₁ Mn	0.051	0.057	0.006

Table S2 The ΔA between TMB/H₂O₂/PW₁₁M(PW₉M₃) and TMB/H₂O₂/PW₁₁M(PW₉M₃)-
melamine. Reaction conditions as: 0.05 mM POMs, 0.08 mM TMB, 0.05 mM H₂O₂,
0.05 mM melamine, pH = 7.0, 4 min and 20 °C.

References

- [1] K. Rajar, Sirajuddin, A. Balouch, M. I. Bhanger, M. T. Shah, T. Shaikh, S. Siddiqui, *Appl. Surf. Sci.* 2018, **435**, 1080-1086.
- [2] P. C. Huang, N. Gao, J. F. Li, F. Y. Wu, Sensor. Actuat. B: Chem. 2018, 255, 2779-2784
- [3] N. Gao, P. C. Huang, F. Y. Wu, Spectrochim. Acta A 2018, 192, 174-180.
- [4] M. F. Alam, A. A. Laskar Ahmed, S., Shaida M. A., Younus H., Spectrochim. Acta A 2017, 183, 17-22.
- [5] N. Li, T. Liu, S. G. Liu, S. M. Lin, Y. Z. Fan, H. Q. Luo, N. B. Li, Sensor. Actuat. B: Chem. 2017, 248, 597-604.
- [6] N. Kumar, H. Kumar, B. Mann, R. Seth, Spectrochim. Acta A 2016, 156, 89-97.
- [7] S. Q. Deng, H. Y. Zou, J. Lan, C. Z. Huang , Anal. Methods 2016, 8, 7516-7521.
- [8] J. J. Du, Z. K. Wang, X. J. Peng, J. L. Fan, Ind. Eng. Chem. Res. 2015, 54, 12011-12016.
- [9] J. Y. Xin, L. X. Zhang, D. D. Chen, K. Lin, H. C. Fan, Y. Wang, C. G. Xia, Food Chem. 2015, 174, 473-479.
- [10] C. X. Chen, L.X. Lu, Y. Zheng, D. Zhao, F. Yang, X. R. Yang, Anal. Methods 2015, 7, 161-167.
- [11] H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, *Biosens. Bioelectron.* 2014, 53, 76 81.
- [12] S. S. J. Xavier, C. Karthikeyan, G. G. Kumar, A. R. Kim, D. J. Yoo, Anal. Methods 2014, 6, 8165-8172.
- [13] P. J. Ni, H. C. Dai, Y. L. Wang, Y. J. Sun, Y. Shi, J. T. Hu, Z. Li, *Biosensor. Bioelectron*.2014, 60, 286-291.
- [14] Y. Ma, L. Jiang, Y. Mei, R. Song, D. Tian, H. Huang, *Analyst* 2013, **138**, 5338-5343.
- [15] H. Ping, M. Zhang, H. Li, S. Li, Q. Chen, C. Sun, T. Zhang, Food Control 2012, 23, 191-197.
- [16] Z. Wu, H. Zhao, Y. Xue, Q. Cao, J. Yang, Y. He, X. Li, Z. Yuan, *Biosens. Bioelectron*. 2011, 26, 2574-2578.

[17] N. Ding, N. Yan, C. Ren, X. Chen, Anal. Chem. 2010, **82**, 5897-5899.

[18] C. Han, H. Li, Analyst 2010, **135**, 583-588.