Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Materials for

Eight out of Eight: A Detailed Kinetic Study on the Reactivities of the Eight Hydroxyl groups of Sucrose with Phenyl Isocyanate

Lajos Nagy¹, Bence Vadkerti¹, Gyula Batta², Péter Pál Fehér³, Miklós Zsuga¹, Sándor Kéki^{1*}

¹Department of Applied Chemistry, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;

²Department of Organic Chemistry, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;

³Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1519 Budapest, Hungary

*Correspondence: keki.sandor@science.unideb.hu (S.K.); Tel: +36-52-512-900 (ext. 22455)

Table of Contents

Figure S1. The HPLC-UV and the extracted ion (EIC at m/z 496.1) chromatograms2	
Figure S2. The normalized UV-spectra extracted at each peak from 1 to 8 together with the	
spectrum of methyl phenylcarbamate (PI)2	
Figure S3. The HPLC-UV and the extracted ion (EIC at m/z 615.2) chromatograms	
Figure S4. The MS/MS spectra for the products of ¹³ C-sucrose-phenyl isocyanate reaction at	
peak 6 (b) and peak 8 (a)	
Figure S5. Partial ¹³ C- ¹ H HMBC NMR spectrum of sucrose (S) - phenyl isocyanate (PI)	
reaction mixture	
Figure S6. Excerpt from ¹³ C- ¹ H HSQC NMR spectrum of sucrose (S) - phenyl isocyanate	
(PI) reaction mixture. Appropriate part of the 1D ¹ H NMR spectrum is shown at the	
horizontal axis. ¹ H assignments of CH ₂ groups are shown in Fig S84	
Figure S7. ¹ H NMR spectrum of sucrose (S) - phenyl isocyanate (PI) reaction mixture with	
the expansion of carbohydrate region	
Figure S8. Expanded region of the ¹ H NMR spectrum of sucrose (S) - phenyl isocyanate (PI)	
reaction mixture, showing the assigned signals of carbohydrate CH ₂ groups5	
Figure S9. ¹³ C- ¹ H HSQC NMR spectral assignments of pure sucrose (S) in DMSO solution.	
The 1D ¹ H NMR spectrum is shown at the horizontal axis, while ¹³ C signals are shown along	
the vertical axis	
Derivation of Equations 5 and 67	

Figure S1. The HPLC-UV and the extracted ion (EIC at m/z 496.1) chromatograms

Figure S2. The normalized UV-spectra extracted at each peak from 1 to 8 together with the spectrum of methyl phenylcarbamate (PI)

Figure S3. The HPLC-UV and the extracted ion (EIC at m/z 615.2) chromatograms (m/z 615.2 corresponds to the chlorinated adduct of sucrose + 2 phenyl isocyanate)

Figure S4. The MS/MS spectra for the products of ¹³C-sucrose-phenyl isocyanate reaction at peak 6 (b) and peak 8 (a)

Figure S5. Partial ¹³C-¹H HMBC NMR spectrum of sucrose (S) - phenyl isocyanate (PI) reaction mixture

Figure S6. Excerpt from ¹³C-¹H HSQC NMR spectrum of sucrose (S) - phenyl isocyanate (PI) reaction mixture. Appropriate part of the 1D ¹H NMR spectrum is shown at the horizontal axis. ¹H assignments of CH₂ groups are shown in Fig S8.

Figure S7. ¹H NMR spectrum of sucrose (S) - phenyl isocyanate (PI) reaction mixture with the expansion of carbohydrate region.

Figure S8. Expanded region of the ¹H NMR spectrum of sucrose (S) - phenyl isocyanate (PI) reaction mixture, showing the assigned signals of carbohydrate CH₂ groups.

Figure S9. ¹³C-¹H HSQC NMR spectral assignments of pure sucrose (S) in DMSO solution. The 1D ¹H NMR spectrum is shown at the horizontal axis, while ¹³C signals are shown along the vertical axis .

Derivation of Equations 5 and 6

Dividing Equation 3 by Equation 2 one can get Equation S1 as:

$$-\frac{d[P^{*}]}{d[S]} = 1 - \frac{[P^{*}]}{2[S]}$$
(S1)

Rearrangement of Equation S1 yield Equation 2:

$$\frac{d[P^{\,\prime}]}{d[S]} - \frac{[P^{\,\prime}]}{2[S]} = -1 \tag{S2}$$

Equation S2 can now be solved analitically, and its solution yield Equation S3

$$[P^{\cdot}] = [S]^{1/2} (C_1 - 2[S]^{1/2})$$
(S3)

where C_1 is an integration constant.

Taking into account the initial conditions, i.e., that at $[S] = [S]_0 \longrightarrow [P'] = 0$, C_1 can be determined and by substituting it into Equation 3, we get Equation S4 for the dependence of [P'] on [S] as:

$$[P'] = 2[S]^{1/2}([S]_o^{1/2} - [S]^{1/2})$$
(S4)

Furthermore, dividing Equation 3 by Equation 4 one can get Equation S5 as:

$$\frac{d[P^{\,\prime}]}{d[P]} = \frac{2[S]}{[P^{\,\prime}]} - 1 \tag{S5}$$

Since $[S]_0 >> [I]_0$, the relation of $2[S]/[P^{`}] >> 1$ is also valid and then Equation S5 simplifies to Equation S6:

$$\frac{d[P^{\,\prime}]}{d[P]} \cong \frac{2[S]}{[P^{\,\prime}]} \tag{S6}$$

Substituting Equation S4 into Equation S6, and after rearrangement, we obtain the following differential equation:

$$\frac{d[P]}{d[S]} \approx \frac{[S]_o + 2[S] - 3[S]_o^{1/2}[S]^{1/2}}{[S]}$$
(S7)

After solving of Equation S7, we arrive at Equation S8.

$$[P] \cong C_1 + [S]_o \ln([S]) - 6[S]^{1/2} [S]_o^{1/2} + 2[S])$$
(S8)

where $C_1 = 4[S]_o - [S]_o \ln([S]_o)$, C_1 was obtained by considering the initial conditions, i.e., at $[S] = [S]_o - [P] = 0$.

Substitution of C_1 into Equation S8, yield Equation S9, which shows the dependence of [P] on [S] as:

$$[P] \cong [S]_o - [S] + [S]_o \ln\left(\frac{[S]}{[S]_o}\right) + 3\left(S]_o^{1/2} - [S]^{1/2}\right)$$
(S9)

Taking into account that $[S] \cong [S]_o - [I]_o$ and substituting it into Equation S4 and S9 we obtain Equations S10 and S11 which are the same as Equations 5 and 6.

$$[P^{`}] \cong 2([S]_{o} - [I]_{o})^{1/2} \{ [S]_{o}^{1/2} - ([S]_{o} - [I]_{o})^{1/2} \}$$
(S10)

$$[P] \cong [I]_o + [S]_o \ln\left(1 - \frac{[I]_o}{[S]_o}\right) + 3\{[S]_o^{1/2} - ([S]_o - [I]_o)^{1/2}\}^2$$
(S11)