Supporting Information

Core@Shell Hollow Heterostructure of Co₃O₄ and Co₃S₄: An Efficient Oxygen Evolution Catalyst

Chavi Mahala, Mamta Devi Sharma, Mrinmoyee Basu*

Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan-333031

Fig. S1: XRD pattern of Co₃O₄@Co₃S₄-1 and Co₃O₄@Co₃S₄-2 sheets.

Fig. S2: EDS area mapping of Co_3O_4 sheets showing the uniform distribution of Co and O.

Fig. S3: (a) EDS line mapping shows comparative distribution of Co and O and (b) EDS spectrum indicting the presence of Co and O in Co_3O_4 sheets.

Fig. S4: EDS area mapping of $Co_3O_4@Co_3S_4$ -2 sheets showing the uniform distribution of Co, O and S.

Fig. S5: (a) EDS line mapping shows comparative distribution of Co, S and O and (b) EDS spectrum indicating the signal of Co, S and O in $Co_3O_4@Co_3S_4$ -2 sheets.

Fig. S6: ESD point mapping image taken in different points (a) at the centre of a particle, (b) at the periphery, showing hollow core@shell structure of $Co_3O_4@Co_3S_4$.

Fig. S7: Stability of Co₃O₄@Co₃S₄-2 via consecutive runs up to 1000 cycles.

Table S1: Data Comparison for electrocatalytic activity of different reported catalysts,

 closely relating to the present work.

S.N.	Electrocatalyst	Electr	Electrolyte	Potential	Tafel	Substra	Referen
		ode		(RHE) at	slope	te	ce
		reacti		10			
		on		mA/cm ²			
1	Co. S	ODD	0.1 M	$\frac{\text{Current}}{2.8 \text{ at } 0.7}$		CC	17
1	$Co_{1-x}S^{-}$	UKK		5.8 at 0.7	-	UU	1 /
	Hybrid		коп	V			
2	$Co_3O_4@Co_3S_4$	OER	1 M	1.53 V	-	Ni-	22
	nanoarrays	and	КОН			Foam	
		HER					
3	NiCo ₂ S ₄ @N/S-	OER	0.1 M	0.47 V	-	GC	R1
	rGO		КОН				
4	CoO _x @CN	OER	1 M KOH	0.26 V	115	GC	R2
5	Co ₃ O ₄ C-NA	OER	0.1 M KOH	1.52 V	70	Cu-foil	R3
6	Mn ₃ O ₄ /CoSe ₂	OER	0.1 M KOH	0.45 V	49	GC	R4
7	Co ₃ O ₄ /N-doped-	OER	1 M KOH	1.54 V	67	Ni-foam	13
	graphene						
8	N-doped	OER	1 M KOH	1.57 V	71	GC	R5
	graphene-CoO						
9	CeO ₂ /CoSe ₂	OER	0.1 M KOH	0.288 V	44	GC	R6
10	WS_2/WO_2	HER	0.5 M	-90 mV	63	GC	19
			H ₂ SO ₄				
11	MoS_2/MoO_2	HER	0.5 M	-120 mV	51	GC	19
			H ₂ SO ₄				
12	Co_3O_4 $@Ni_3S_2/N$	OER	1 M KOH	260@20	171	Ni-foam	45
	F composite			mA /cm ²			
13	$Co_3O_4@Co_3S_4$	OER	0.5 M KOH	1.606 V	80	GC	This
							work

References:

R1. Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002-5008.

R2. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688–2694.

R3. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925–13931.

R4. M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, *J. Am. Chem. Soc.*, 2012, **134** 2930-2933.

R5. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609-616.

R6. Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, *Small*, 2015, 11, 182-188.