Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Visible-light-promoted organic dyes-catalysed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diphenylphosphoryl hydrazides

Rui Li,^{a,#} Tao Shi,^{a,#} Xiao-Lan Chen,^a* Qi-Yan Lv,^{a,b}* Yin-Li Zhang,^a Yu-Yu Peng,^c Ling-Bo Qu,^a and Bing Yu^{a,b}*

- a. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. Email: chenxl@zzu.edu.cn, qiyanlv@zzu.edu.cn, bingyu@zzu.edu.cn
- b. Henan Nonferrous Metals Geological Exploration Institute, Zhengzhou 450052, Henan Province, China.
- c. Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science & Technology, Changsha 410114, China

Rui Li and Tao Shi contributed equally

Content

1.	General information	2
2.	Experimental procedure for synthesis of 3a-3k	2
3.	Experimental procedure for synthesis of 7a-7j	2
4.	Optimization of the reaction conditions	3
5.	Control experiments	5
6.	Luminescence quenching experiments	6
7.	The mechanism of phosphorylation reaction	7
8.	Characterization data	8
9.	¹ H, ¹³ C and ³¹ P NMR spectra	13
10.	References	34

1. General information

All the arylhydrazines, thioethers, diphenylphosphine oxide and solvents were purchased from commercial suppliers and used without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry. The ¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ³¹P NMR (162 MHz) spectra data were recorded on Bruker advance 400 MHz spectrometer using CDCl₃ or DMSO-*d6* as solvent. ¹³C NMR (101 MHz) and ³¹P NMR (162 MHz) spectra being recorded with broad band proton decoupled. ¹H NMR and ¹³C NMR spectra was recorded with tetramethylsilane ($\delta =$ 0.00 ppm) as internal reference. EI-MS data were recorded on Shimadzu GCMS QP2010 Ultra. High resolution mass spectra (HRMS) were obtained with a Waters Micromass Q-Tof Micro instrument using the ESI technique.

2. Experimental procedure for synthesis of 3a-3k

To a 25 mL reaction tube, arylhydrazine (0.5 mmol), thioether (3.5 mmol), Na₂eosin Y (5 mol%), H₂O₂ (1 equiv.) were dissolved in DMSO (1.5 mL), and then the tube was stirred under the irradiation of 20 W blue LEDs at room temperature for 8 h. After reaction, the mixture was diluted with water and extracted with EA (ethyl acetate)

(25 mL $\!\times\!3$). The combined organic layers were collected and dried by anhydrous

 Na_2SO_4 . The residue was purified by column chromatography on silica gel to afford the desired products.

3. Experimental procedure for synthesis of 7a-7j

To a 25 mL reaction tube, arylhydrazine (0.55 mmol), diphenylphosphine oxide (0.5 mmol), rose bengal (10 mol%), Cs_2CO_3 (1 equiv.) were dissolved in CH₃CN (1.5 mL), and then the tube was stirred under the irradiation of 20 W white LEDs at room temperature for 9 h. After reaction, the mixture was diluted with water and extracted with EA (25 mL×3). The combined organic layers were collected and dried by anhydrous Na₂SO₄. The solution was distilled under reduced pressure to move solvent CH₃CN. Because the product cannot dissolve in EA, the reaction system was then washed by EA (5 mL×3). Then the white solid product was obtained after removing organic layers dissolved in EA from reaction system.

Figure S1 Before and after washing reaction system using EA

4. Optimization of the reaction conditions ^a

Scheme S1 Structures of organic dyes

Table S1 Optimization	of the phosphorylation	reaction conditions a
-----------------------	------------------------	-----------------------

	O NHNH ₂ + Ph-P- Pr	base H $\frac{\text{photocatalyst}}{\text{solvent, }hv, \text{ time}}$	H H H H H H H H H H H H H H H H H H H	
	1a 6a		7a	
Entry	PC (Photocatalyst)	Base	Solvent	Yield ^b (%)
1	Na ₂ -eosin Y	Cs_2CO_3	CH ₃ CN	42
2	rose bengal	Cs_2CO_3	CH ₃ CN	55
3	fluorescein	Cs_2CO_3	CH ₃ CN	24
4	rhodamine B	Cs_2CO_3	CH ₃ CN	35
5	eosin Y	Cs_2CO_3	CH ₃ CN	15
6	eosin B	Cs_2CO_3	CH ₃ CN	10
7	MB^+	Cs_2CO_3	CH ₃ CN	32
8	rose bengal	NaHCO ₃	CH ₃ CN	13
9	rose bengal	2,6-Lutidine	CH ₃ CN	7
10	rose bengal	TBD	CH ₃ CN	7
11	rose bengal	DBU	CH ₃ CN	3
12	rose bengal	Et ₃ N	CH ₃ CN	6
13	rose bengal	TMG	CH ₃ CN	12
14	rose bengal	Na_2CO_3	CH ₃ CN	9
15	rose bengal	K_2CO_3	CH ₃ CN	11
16	rose bengal	K_3PO_4	CH ₃ CN	19
17	rose bengal	Na ₂ HPO ₄	CH ₃ CN	33
18	rose bengal	Cs_2CO_3	PEG-400	26
19	rose bengal	Cs_2CO_3	PEG-600	21
20	rose bengal	Cs_2CO_3	EC	12
21	rose bengal	Cs_2CO_3	PC	18
22	rose bengal	Cs_2CO_3	DCE	28
23	rose bengal	Cs_2CO_3	THF	40
24	rose bengal	Cs_2CO_3	DMF	0
25	rose bengal	Cs_2CO_3	1,4-dioxane	30
25	rose bengal	Cs_2CO_3	toluene	30
26^{c}	rose bengal	Cs_2CO_3	CH ₃ CN	33
27^{d}	rose bengal	Cs_2CO_3	CH ₃ CN	trace
28^e	rose bengal	Cs_2CO_3	CH ₃ CN	40
29 ^f	rose bengal	Cs_2CO_3	CH ₃ CN	32
30 ^g	rose bengal	Cs_2CO_3	CH ₃ CN	15
31 ^h	rose bengal	Cs_2CO_3	CH ₃ CN	20
31^{i}	rose bengal	Cs_2CO_3	CH ₃ CN	30
32 ^j	rose bengal	Cs ₂ CO ₃	CH ₃ CN	62
33^k	rose bengal	Cs_2CO_3	CH ₃ CN	30

^{*a*} Reaction conditions unless otherwise specified: To a reaction tube, **1a** (0.55 mmol), **6a** (0.5 mmol), PC (photocatalyst) (10 mol%), base (1 equiv), solvent (1.5 mL) were added, then the tube was capped and stirred under the irradiation of 20 W white LEDs for 12 h at room temperature. TBD = 1,5,7-Triazabicyclo[4.4.0]dec-5-ene, DBU= 1,8-Diazabicyclo[5.4.0]undec-7-ene, TMG = 1,1,3,3-tetramethylguanidine, EC = Ethylene carbonate, PC = Propylene carbonate. ^{*b*} Yields were given by ³¹P NMR. ^{*c*}Cs₂CO₃ (1.5 equiv). ^{*d*} **6a** (1 mmol). ^{*e*} **1a** (1 mmol). ^{*f*} Cs₂CO₃ (0.75 equiv). ^{*g*} Cs₂CO₃ (0.5 equiv). ^{*h*} 3 h. ^{*i*} 5 h. ^{*j*} 9 h. ^{*k*} 24h.

5. Control experiments

HR-MS calc. for $C_{15}H_{24}NOS^+$ (4a) m/z = 266.1573 found 266.1581

Figure S2. HR-MS spectrum of compound 4a

HR-MS calc. for $C_{21}H_{28}NaO^+$ (5a) m/z = 319.2038 found 319.2052

Figure S3. HR-MS spectrum of compound 5a

HR-MS calc. for $C_{21}H_{28}NO_2P^+$ (8a) m/z = 358.1930 found 358.1941

Figure S4. HR-MS spectrum of compound 8a

6. Luminescence quenching experiments

Emission intensities were recorded using a F-4600 FL Spectrophotometer. First, the emission intensity of Na₂-eosin Y (Na₂-EY) solutions was observed at 554 nm. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of Na₂-eosin Y (Na₂-EY) and different concentration of phenyl hydrazine **1a**, diphenyl disulfide **2a** and H₂O₂ in degassed anhydrous DMSO in 10 mm path length quartz cuvette was collected.

Figure S5. Luminescence quenching study: (a) the emission spectra of a 5×10^{-5} M solution of Na₂-EY with various concentrations of **1a** in degassed anhydrous DMSO excited at 490 nm; (b) the emission spectra of a 5×10^{-5} M solution of Na₂-EY with various concentrations of H₂O₂ in degassed anhydrous DMSO excited at 490 nm

7. The mechanism of phosphorylation reaction

Based on the results of control experiments and literature reports, we proposed the reaction mechanism as shown in Scheme S2. Firstly, photocatalyst rose bengal (RB) transformed to the exited state RB* under the irradiation of visible light. Diphenylphosphine oxide **6a** could exist in equilibrium with its trivalent tautomer phosphinous acid **15**. Then via a single electron transfer (SET) process, RB* was reductively quenched by phosphinous acid **15** with the generation of RB⁻ and radical anion **16**. Deprotonation of radical anion **16** afforded the phosphorus-centered radical **17**. Single electron oxidation of RB⁻ by O₂ (air) generated ground state RB and O₂⁻. Meanwhile, phenyl hydrazine **1a** transferred to radical **10** through oxidation followed by deprotonation. Then via the same SET process and deprotonation rendered radical **10** transfer to azobenzene **11**. An addition of phosphorus-centered radical **17** to azobenzene **18** in the presence of an electron and a proton which were generated in the reaction system.

Scheme S2 The proposed mechanism of phosphorylation reaction

8. Characterization data

Diphenylsulfane (3a)¹

Colorless oil, 68% yield (64 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.43 (m, 4H), 7.42 – 7.36 (m, 4H), 7.36 – 7.30 (m, 2H).¹³C NMR (101 MHz, CDCl₃): δ 135.90, 131.15, 129.32, 127.16.

4-methoxyphenylphenylsulfane (**3b**)²

Colorless oil, 64% yield (69 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.1 Hz, 1H), 7.48 (d, J = 2.2 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 6.97 (d, J = 2.2 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 3.87 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ 159.91, 138.73, 135.49, 129.02, 128.23, 125.83, 124.31, 115.07, 55.42.

4-nitrophenylphenylsulfane $(3c)^2$

Yellow oil, 20% yield (23 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 8.3, 1.5 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.52 (dd, J = 5.0, 1.9 Hz, 3H), 7.36 (m, 1H), 7.24 (m,1H), 6.89 (dd, J = 8.2, 1.3 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 135.95, 133.43, 131.00, 130.13, 130.03, 128.31, 125.78, 124.94.

2-nitrophenylphenylsulfane (**3d**)³

Yellow oil, 17% yield (20 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 8.3, 1.4 Hz, 1H), 7.62 (dd, J = 7.1, 2.5 Hz, 2H), 7.52 (dd, J = 5.1, 1.9 Hz, 3H), 7.40 – 7.34 (m, 1H), 7.27 – 7.22 (m, 1H), 6.89 (dd, J = 8.3, 1.3 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 145.00, 139.50, 135.92, 133.41, 131.02,130.12, 130.02, 128.32, 125.76, 124.94.

2-phenylthiopyridine (3e)¹

Colorless oil, 71% yield (65 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.45 (dd, J = 5.0, 1.8 Hz, 1H), 7.62 (dd, J = 6.6, 3.0 Hz, 2H), 7.50 – 7.40 (m, 4H), 7.05 – 6.99 (m, 1H), 6.90 (d, J = 8.1 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 161.60, 149.60, 136.76, 135.00, 131.03, 129.68, 129.14, 121.34, 119.91.

Methoxyphenylphenylsulfane $(3f)^2$

Colorless oil, 74% yield (80 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.1 Hz, 1H), 7.48 (d, J = 2.2 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 6.97 (d, J = 2.2 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 3.87 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ 159.91, 138.73, 135.49, 129.02, 128.23, 125.83, 124.31, 115.07, 55.42.

4-phenylthioaniline (**3g**)⁴

Yellow oil, 70% yield (71 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (dd, J = 7.7, 1.6 Hz, 1H), 7.25 (dd, J = 8.3, 7.0 Hz, 3H), 7.17 – 7.09 (m, 3H), 6.84 – 6.77 (m, 2H), 4.32 (s, 2H).¹³C NMR (101 MHz, CDCl₃): δ 148.88, 137.52, 136.86, 131.18, 129.04, 126.43, 125.45, 118.77, 115.39, 114.36.

2-nitrophenyl phenyl sulfane $(3h)^3$

Yellow oil, 15% yield (17 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 8.3, 1.4 Hz, 1H), 7.62 (dd, J = 7.1, 2.5 Hz, 2H), 7.52 (dd, J = 5.1, 1.9 Hz, 3H), 7.40 – 7.34 (m, 1H), 7.27 – 7.22 (m, 1H), 6.89 (dd, J = 8.3, 1.3 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 145.00, 139.50, 135.92, 133.41, 131.02,130.12, 130.02, 128.32, 125.76, 124.94.

4-nitrophenyl phenylsulfane (3i)²

Yellow oil, 18% yield (21 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 8.3, 1.5 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.52 (dd, J = 5.0, 1.9 Hz, 3H), 7.36 (m, 1H), 7.24 (m,1H), 6.89 (dd, J = 8.2, 1.3 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 135.95, 133.43, 131.00, 130.13, 130.03, 128.31, 125.78, 124.94.

2-phenylthiopyridine (**3j**)¹

Colorless oil, 75% yield (70 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.45 (dd, J = 5.0, 1.8 Hz, 1H), 7.62 (dd, J = 6.6, 3.0 Hz, 2H), 7.50 – 7.40 (m, 4H), 7.05 – 6.99 (m, 1H), 6.90 (d, J = 8.1 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 161.60, 149.60, 136.76, 135.00, 131.03, 129.68, 129.14, 121.34, 119.91.

Methyl phenylsulfane (3k)⁵

Colorless oil, 71% yield (44 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.32 (m, 4H), 7.21 (m, 1H), 2.54 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ 138.52, 128.91, 126.63, 125.07, 15.86.

N', P, P-triphenylphosphinic hydrazide $(7a)^6$

White solid, 55% yield (85 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 – 7.87 (m, 4H), 7.57 – 7.46 (m, 7H), 7.44 (d, J = 10.6 Hz, 1H), 7.14 (dd, J = 8.5, 7.1 Hz, 2H), 7.04 – 6.99 (m, 2H), 6.72 – 6.66 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 150.84 (d, J = 5.2 Hz), 133.72, 132.43 (d, J = 9.1 Hz), 132.05 (d, J = 2.5 Hz), 128.87 (d, J = 5.3 Hz), 128.78, 118.83, 113.41. ³¹P NMR (162 MHz, DMSO- d_6) δ 25.49.

N-(4-methoxyphenyl)-*P*,*P*-diphenylphosphinic hydrazide (7b)

White solid, 76% yield (128 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.11 – 7.87 (m, 4H), 7.50 (m, 2H), 7.47 – 7.38 (m, 4H), 6.94 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 8.9 Hz, 2H), 5.58 (d, J = 3.2 Hz, 1H), 4.93 (d, J = 17.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.65, 131.60 (d, J = 5.9 Hz), 131.22 (d, J = 10.5 Hz), 129.02 (d, J = 66.3 Hz), 128.58 (d, J = 3.7 Hz), 128.49 (d, J = 6.8 Hz), 114.20, 113.88, 55.31 (d, J = 31.4 Hz). ³¹P NMR (162 MHz, DMSO- d_6) δ 12.87. HRMS (ESI) calcd. for C₁₉H₂₀N₂O₂P [M+H]⁺: 339.1257, found: 339.1256.

P,*P*-diphenyl-*N'*-(p-tolyl)phosphinic hydrazide (7c)

White solid, 67% yield (108 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 – 7.85 (m, 4H), 7.57 – 7.44 (m, 6H), 7.38 (d, J = 24.2 Hz, 1H), 7.27 (d, J = 3.9 Hz, 1H), 6.98 – 6.89 (m, 4H), 2.18 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 146.16, 132.22 (d, J = 3.6 Hz), 132.11, 131.20, 129.92, 129.60, 128.59 (d, J = 12.5 Hz), 113.54, 20.55. ³¹P NMR (162 MHz, DMSO- d_6) δ 20.85. HRMS (ESI) calcd. for C₁₉H₁₉N₂OP [M+H]⁺: 323.1308, found: 323.1307.

P,*P*-diphenyl-*N'*-(m-tolyl)phosphinic hydrazide (7d)

White solid, 68% yield (109 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.98 – 7.83 (m, 4H), 7.63 – 7.47 (m, 6H), 7.43 (d, *J* = 24.5 Hz, 1H), 7.37 (d, *J* = 3.7 Hz, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.86 – 6.77 (m, 2H), 6.51 (d, *J* = 7.4 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 150.84 (d, *J* = 5.2 Hz), 137.84, 133.75, 132.45 (d, *J* = 8.5 Hz), 132.04, 128.84 (d, *J* = 12.3 Hz), 119.73, 114.00, 110.71, 21.84. ³¹P NMR (162 MHz, DMSO-*d*₆) δ 19.01. HRMS (ESI) calcd. for C₁₉H₁₉N₂OPNa [M+Na]⁺: 345.1133, found: 345.1130.

N'-(4-fluorophenyl)-*P*,*P*-diphenylphosphinic hydrazide (7e)

White solid, 74% yield (121 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99 – 7.82 (m, 4H), 7.59 – 7.46 (m, 7H), 7.45 (d, *J* = 4.2 Hz, 1H), 7.08 – 6.93 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.27 (d, *J* = 233.0 Hz), 147.43, 133.66, 132.43 (d, *J* = 9.3 Hz), 132.09 (d, *J* = 2.9 Hz), 128.87 (d, *J* = 12.2 Hz), 115.27 (d, *J* = 22.0 Hz), 114.56 (d, *J* = 7.4 Hz). ³¹P NMR (162 MHz, DMSO-*d*₆) δ 20.95. HRMS (ESI) calcd. for C₁₈H₁₆FN₂OP [M+H]⁺: 327.1063, found: 327.1063.

N'-(4-chlorophenyl)-P,P-diphenylphosphinic hydrazide (7f)

White solid, 69% yield (118 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.98 – 7.84 (m, 4H), 7.68 (d, J = 3.5 Hz, 1H), 7.61 – 7.44 (m, 7H), 7.17 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.82, 133.48, 132.42 (d, J = 9.0 Hz), 132.19 (d, J = 4.4 Hz), 128.89 (d, J = 12.3 Hz), 128.62, 122.02, 114.84. ³¹P NMR (162 MHz, DMSO-*d*₆) δ 21.59. HRMS (ESI) calcd. for C₁₈H₁₆ClN₂OP [M+H]⁺: 343.0762, found: 343.0768. HRMS (ESI) calcd. for C₁₈H₁₆ClN₂OP [M+H]⁺: 343.0768.

$$\underbrace{ \begin{array}{c} \begin{array}{c} H & H & H \\ -N - N - P - Ph \\ \end{array} \\ Cl \end{array} } \begin{array}{c} H & H \\ H \\ Ph \\ Cl \end{array}$$

N'-(2-chlorophenyl)-P,P-diphenylphosphinic hydrazide (7g)

White solid, 63% yield (108 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.04 – 7.88 (m, 4H), 7.63 – 7.43 (m, 8H), 7.32 – 7.17 (m, 2H), 6.97 (d, J = 4.4 Hz, 1H), 6.82 – 6.73 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.87 (d, J = 3.7 Hz), 147.62, 137.76, 133.36, 132.57 (d, J = 9.2 Hz), 132.17 (d, J = 2.6 Hz), 132.09, 128.85 (d, J = 12.0 Hz), 114.92, 107.54. ³¹P NMR (162 MHz, DMSO- d_6) δ 21.36. HRMS (ESI) calcd. for C₁₈H₁₆ClN₂OP [M+H]⁺: 343.0762, found: 343.0761.

N'-(4-bromophenyl)-*P*,*P*-diphenylphosphinic hydrazide (**7h**)

White solid, 78% yield (150 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 – 7.82 (m, 4H), 7.71 (d, J = 3.4 Hz, 1H), 7.58 (d, J = 12.5 Hz, 1H), 7.56 – 7.46 (m, 7H), 7.28 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 150.25 (d, J = 5.1 Hz), 133.47, 132.43 (d, J = 8.9 Hz), 132.18 (d, J = 3.3 Hz), 131.46, 128.90 (d, J = 12.0 Hz), 115.36, 109.57. ³¹P NMR (162 MHz, DMSO-*d*₆) δ 21.13. HRMS (ESI) calcd. for C₁₈H₁₆BrN₂OP [M+H]⁺: 387.0256, found: 387.0252.

N'-(4-cyanophenyl)-P,P-diphenylphosphinic hydrazide (7i)

White solid, 87% yield (145 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.43 (d, J = 2.3 Hz, 1H), 8.06 – 7.86 (m, 4H), 7.80 (d, J = 23.0 Hz, 1H), 7.59 – 7.45 (m, 8H), 7.08 (d, J = 8.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.57, 133.49, 132.95, 132.43 (d, J = 9.1 Hz), 131.68, 128.98 (d, J = 12.3 Hz), 120.72, 112.88, 98.95. ³¹P NMR (162 MHz, DMSO- d_6) δ 21.49. HRMS (ESI) calcd. for C₁₉H₁₆N₃OP [M+H]⁺: 334.1104, found: 334.1107.

P,*P*-diphenyl-*N*'-(pyridin-2-yl)phosphinic hydrazide (**7j**) White solid, 50% yield (77 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.01 (dd, *J* = 5.0, 1.7 Hz, 1H), 7.97 – 7.86 (m, 5H), 7.67 (d, *J* = 26.3 Hz, 1H), 7.60 – 7.53 (m, 3H), 7.52 – 7.45 (m, 4H), 7.13 (d, *J* = 8.5 Hz, 1H), 6.68 (dd, *J* = 7.0, 4.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.87 (d, *J* = 3.7 Hz), 147.62, 137.76, 132.72 (d, *J* = 127.9 Hz), 132.57 (d, *J* = 9.2 Hz), 132.17 (d, *J* = 2.6 Hz), 128.85 (d, *J* = 12.1 Hz), 114.92, 107.54. ³¹P NMR (162 MHz, DMSO-*d*₆) δ 21.61. HRMS (ESI) calcd. for C₁₇H₁₆N₃OP [M+H]⁺: 310.1104, found: 310.1112.

9. ¹H, ¹³C and ³¹P NMR spectra

10 ppm 130 120

----- 4.318

20 ppm

10 ppm

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

7, 7, 529 (7, 7, 529) 7, 7, 527 7, 7, 514 7, 7, 514 7, 7, 514 7, 7, 514 7, 7, 514 7, 7, 495 7, 7, 495 7, 7, 495 7, 495 7, 495 7, 7, 495 7, 7, 100 1, 467 7, 7, 100 1, 100 1, 10

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 ppm

10.References

- 1. A. Rostami, A. Rostami and A. Ghaderi, *J. Org. Chem.*, 2015, **80**, 8694-8704.
- 2. C. Wang, Z. Zhang, Y. Tu, Y. Li, J. Wu and J. Zhao, J. Org. Chem., 2018, 83, 2389-2394.
- 3. W. Fu, T. Liu, Z. Fang, Y. Ma, X. Zheng, W. Wang, X. Ni, M. Hu and T. Tang, *Chem. Commun.*, 2015, **51**, 5890-5893.
- 4. R. Sikari, S. Sinha, S. Das, A. Saha, G. Chakraborty, R. Mondal and N. D. Paul, *J. Org. Chem.*, 2019, **84**, 4072-4085.
- 5. M. Majek and A. J. von Wangelin, *Chem. Commun.*, 2013, **49**, 5507-5509.
- 6. H. Bock and E. Baltin, *Chem. Ber.*, 1965, **98**, 2844-2854.