Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

> Constitutional Isomers of Dendrimer-like Pyrene Substituted Cyclotriphosphazenes: Synthesis, theoretical calculation, and fluorescence receptor for the detection of explosive nitroaromatics

> Husniye Ardic Alidagi, Süreyya Oğuz Tümay, Ahmet Şenocak, Ömer Faruk Çiftbudak, Bünyemin Çosut and Serkan Yeşilot*

Contribution from: Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey

* Author for correspondence:
Professor Serkan YEŞİLOT, Department of Chemistry, Gebze Technical University, P.O.Box:
141, Gebze 41400, Kocaeli, Turkey
Tel: 00 90 262 6053014
Fax: 00 90 262 6053101
e-mail: yesil@gtu.edu.tr

Figure S1. Positive ion and linear mode MALDI-MS spectra of compounds **3** (a) and **4** (b) were obtained in DHB (20 mg/mL THF) MALDI matrix using nitrogen laser accumulating 50 laser shots.

Figure S2. Positive ion and linear mode MALDI-MS spectra of compound **6** were obtained in DHB (20 mg/mL THF) MALDI matrix using nitrogen laser accumulating 50 laser shots.

Figure S3. ¹H NMR spectra of compound 6 in CDCl₃ (a) and D₂O exchange (b).

Figure S4. Proton-decoupled ¹³C NMR spectrum of compound 6 in CDCl₃ solution.

Figure S5. ¹H NMR spectra of compound 4 in CDCl₃ (a) and D₂O exchange (b).

Figure S6. Proton-decoupled ¹³C NMR spectra of compounds 3 (a) and 4 (b) in CDCl₃ solution.

Figure S7. Positive ion and linear mode MALDI-MS spectra of compounds **5** (inset) and **7** were obtained in DHB (20 mg/mL THF) MALDI matrix using nitrogen laser accumulating 50 laser shots.

Figure S8. Proton-decoupled ³¹P NMR spectra of compounds 5 (a) and 7 (b) in CDCl₃ solution.

Figure S9. ¹H NMR spectrum of compound 5 in CDCl_{3.}

Figure S10. Proton-decoupled ¹³C NMR spectrum of compound 5 in CDCl₃ solution.

Figure S11. ¹H NMR spectrum of compound 7 in CDCl_{3.}

Figure S12. Proton-decoupled ¹³C NMR spectrum of compound 7 in CDCl₃ solution.

Figure S13. TGA thermograms of 5 and 7 from 25 to 700°C at a heating rate of 10° C/min under N₂ flow of 50mL/min.

Figure S14. DSC thermograms in N_2 atmosphere of compounds (5 and 7) from 25 to 180°C at a heating rate of 10°C/min.

Figure S15. a) UV (normalized) and b) fluorescence spectra (normalized) of 4 in different solvents (λ_{ex} = 325 nm).

Figure S16. a) UV (normalized) and b) fluorescence spectra (normalized) of 5 in different solvents (λ_{ex} = 325 nm).

Figure S17. a) UV (normalized) and b) fluorescence spectra (normalized) of 6 in different solvents (λ_{ex} = 325 nm).

Figure S18. a) UV (normalized) and b) fluorescence spectra (normalized) of 7 in different solvents (λ_{ex} = 325 nm).

Figure S19. Fluorescence spectra of **4** at different concentration in **a**) ACN, **b**) dichloromethane, **c**) dioxane, **d**) MeOH, **e**) CH, **f**) THF and **g**) toluene (λ_{ex} = 325 nm).

Figure S20. Fluorescence spectra of 5 at different concentration in a) dioxane, b) dichloromethane, c) THF and d) toluene (λ_{ex} = 325 nm).

Figure S21. Fluorescence spectra of **6** at different concentration in **a**) ACN, **b**) dichloromethane, **c**) dioxane, **d**) MeOH, **e**) CH, **f**) THF and **g**) toluene (λ_{ex} = 325 nm).

Figure S22. Fluorescence spectra of 7 at different concentration in a) dioxane, b) dichloromethane, c) THF and d) toluene (λ_{ex} = 325 nm).

Figure S23. Fluorescence spectra (normalized) of **a**) **5** and **b**) **7** in CH₂Cl₂ and solid state (λ_{ex} = 325 nm).

Figure S24. Fluorescence decay profile of **a**) **5** and **b**) **7** with nitrobenzene (NB), nitrophenol (NP), 2,4-dinitrotoulene (2,4-DNT) and 2,4,6-trinitrotoluene (TNT) using laser excitation source of 390 nm.

Figure S25. Job's Plots of a) compound 5 and b) compound 7 with NACs.

Figure S26. Intramolecular $\pi - \pi$ and CH- π interactions in the structure of compound 7 in THF and intramolecular interactions among the pyrene units in compound 7 and intermolecular interactions between compound 7 and TNT (Å).

Table S1. Comparison of the selected intramolecular CH-- π interaction distances for compounds 4, 5, 6 and 7 (Å).

4		5		6		7	
a	2.654	a	3.638	a	3.26	a	3.26
	2 0 5 0		2 0 7 0		0		3
b	2.950	b	2.870	b	3.94	b	3.25
c	3.052	c	3.541	c	4.74	c	3.12
					4		6
d	2.980	d	3.172	d	5.49	d	3.29
					8		7
e	3.567	e	3.148	e	7.33	e	3.42

				5		9
f	2.711	f	3.281		f	3.46
						9
g	2.743				g	3.38
						8
					h	3.84
						0

Table S2. Comparison of the selected intramolecular CH-- π and π -- π interactions distances for compounds 7 in THF and intramolecular interactions among the pyrene units in compound 7 and intermolecular interactions between compound 7 and TNT (Å).

π π interactions in		π π interactions in		H π interactions in		H π interactions in	
THF		TNT + compound 7		THF		TNT + compound 7	
1	3.396	а	3.311	1	3.152	а	3.440
2	3.963	b	3.241	2	3.599	b	2.980
3	3.487	c	3.235	3	3.135	c	2.938
4	3.584	d	3.731	4	3.295	d	3.170
5	3.677	e	3.572	5	3.323	e	3.126