New Journal of Chemistry (RSC) Electronic Supplementary Information

A hierarchical porous of silicon@TiO2@carbon composite novel

anode materials for high performance li-ion battery

Qiliang Pan^{a,b}, Jianguo Zhao^{a,b,*}, Baoyan Xing^{a,b}, Shang Jiang^b, Wenshan Qu^b, Shanshan Zhang^b, Yichan Zhang^b, Lu zhao^b, Wei Liang^{a,*}

(a. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi province 030024, China; b. Institute of Carbon Materials Science, Shanxi DaTong University, DaTong, Shanxi province 037009; China)

Fig. S1 SEM images of the Si@TiO2 composite

Fig. S2. The relevant pore diameter scatter diagrams of TiO_2 , pure Si and $Si@TiO_2@C$ composite

Fig. S3 (a) Rate performance of TiO_2 electrodes at various current density. (b) The cycle performance and CE of TiO_2 .

The specific capacity of pure TiO₂ electrodes is 296.4 and 655.5mAh g⁻¹ in initial charge and discharge at 100 mA g⁻¹, respectively. The CE value of the pure TiO₂ is 45.2%. The specific capacity of the pure TiO₂ maintains 262.4 and 270.2 mAh g⁻¹ after 50 cycles at 100 mA g⁻¹, respectively. The CE value is 97.1%. Compared with pure TiO₂, the properties of the Si@TiO₂@C composite materials are obviously superior.

Electrodes	Pure Si	Si@TiO ₂	Si@TiO ₂ @C
R _e	6.98	4.695	2.535
R _{ct}	122.6	99.69	27.96

Table S1 Equivalent circuit parameters derived using equivalent circuit model