## **Electronic Supplementary Information**

## Molecular Engineering of Supercapacitor Electrodes with Monodispersed N-Doped Carbon Nanoporous Spheres

Xinhua Huanga,\*, Nuoya Wanga, Fei Lia, Xingxing Zhua, Kin Liaob, Vincent Chanc

and Lidong Zhangd,\*

<sup>a</sup>School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China. E-mail: xhhuang@aust.edu.cn
<sup>b</sup>Department of Aerospace Engineering/Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
<sup>c</sup>Department of Biomedical Engineering, Khalifa University, Abu Dhabi, UAE
<sup>d</sup>School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China E-mail: ldzhang@chem.ecnu.edu.cn



Figure S1 FT-IR spectra of the polytriazinane.

| Entry | 2,6-Diamino<br>pyridine/g | Formalde<br>hyde/g | H <sub>2</sub> O/<br>mL | Temp <sup>a</sup><br>./°C | Time<br>/h | Ratio <sup>c</sup> | Additive/g          |
|-------|---------------------------|--------------------|-------------------------|---------------------------|------------|--------------------|---------------------|
| 1     | 1                         | 8.9                | 18.4                    | 180                       | 6          | 12                 | 0                   |
| 2     | 2                         | 8.9                | 18.4                    | 180                       | 6          | 6                  | 0                   |
| 3     | 0.5                       | 6.7                | 13.8                    | 180                       | 6          | 18                 | 0                   |
| 4     | 1                         | 8.9                | 18.4                    | 120                       | 6          | 12                 | 0                   |
| 5     | 2                         | 8.9                | 18.4                    | 120                       | 6          | 6                  | 0                   |
| 6     | 0.5                       | 6.7                | 18.4                    | 120                       | 6          | 18                 | 0                   |
| 7     | 0.05                      | 0.074              | 100                     | 60                        | 12         | 2                  | 0.0068 <sup>d</sup> |
| 8     | 0.05                      | 0.074              | 100                     | 60                        | 12         | 2                  | 0                   |
| 9     | 0.05                      | 0.074              | 100                     | rt <sup>b</sup>           | 18         | 2                  | 0.25 <sup>d</sup>   |
| 10    | 0.05                      | 0.074              | 100                     | rt <sup>b</sup>           | 18         | 2                  | 0                   |

Table S1 The polymerization of PF in different conditions

<sup>a</sup>Reaction temperature in autoclave; <sup>b</sup>Polymerization without autoclave at room temperature; <sup>c</sup>Molar ratio of 2,6-diaminopyridine to formaldehyde; <sup>d</sup>The mass of ethylenediamine as catalyst.



Figure S2 The SEM images of the PF spheres under different synthesis conditions and their distribution of diameter.



Figure S3The N<sub>2</sub> uptake isotherms of all the four carbon samples.



**Figure S4** The HR-TEM of the carbon spheres edge (a) C/N-PNSs-1, (b) C/N-PNSs-2; (3) C/N-PNSs-3; (4) C/N-PNSs-4.



**Figure S5** The charge-discharge curves of (a) C/N-PNSs-1; (2) C/N-PNSs-2; (c) C/N-PNSs-3; (4) C/N-PNSs-4 at different current density in 6 M KOH as electrolyte at 25

°C.



Figure S6. Ragon plot (energy density vs. power density) of C/N-PNSs.

| Sample         | N <sup>a</sup><br>(wt %) | S <sub>BET</sub> <sup>b</sup><br>(m <sup>2</sup> /g) | Pore<br>structure | Electrolyte                   | Capacitance<br>(F/g) | Ref. |
|----------------|--------------------------|------------------------------------------------------|-------------------|-------------------------------|----------------------|------|
| C/N-PNSs -1    | 10.4                     | 704.6                                                | hierarchical      |                               | 297 at 1A/g          |      |
| C/N-PNSs -2    | 8.8                      | 778.1                                                | hierarchical      |                               | 424 at 1A/g          | This |
| C/N-PNSs -3    | 9.1                      | 627.8                                                | micro             | о м коп                       | 347 at 1A/g          | work |
| C/N-PNSs -4    | 8.7                      | 924.4                                                | micro             |                               | 257 at 1A/g          |      |
| 3CPC           | _                        | 3326                                                 | hierarchical      | $1 \text{ M H}_2 \text{SO}_4$ | 755 at 1A/g          | S1   |
| P(ANI-co-PPDA) | 6.43                     | 1512                                                 | meso              | 6 M KOH                       | 316 at 1A/g          | S2   |
| NC             | 7.1±1.8                  | 536-2358                                             | hierarchical      | EMIM-BF <sub>4</sub>          | 173 at 10 mV/s $$    | S3   |
| HPNDC          | 6.75                     | 2905.4                                               | micro             | 6 M KOH                       | 301.9 at 1A/g        | S4   |
| N-MCSs         | 7.14                     | 1478                                                 | micro             | 11 wt.% KOH                   | 292 at 1 A/g         | S5   |
| TCNQ-CTFs      | > 8                      | 3600                                                 | micro             | EMiMBF <sub>4</sub>           | 383 at 0.2 A/g       | S6   |
| ACOF           | 1.6                      | 1596                                                 | micro             | 6 M KOH                       | 234at 1 A/g          | S7   |

**Table S2** Comparison of the preparation of N-doped porous carbon materials.

<sup>a</sup>The mass content of nitrogen; <sup>b</sup>Specific surface area.

## **References:**

[S1] S. N. Guo, H. K. Shen, Z. F. Tie, S. Zhu, P. H. Shi, J. C. Fan, Q. J. Xu and Y. L. Min, Three-dimensional cross-linked Polyaniline fiber/N-doped porous carbon with enhanced electrochemical performance for high-performance supercapacitor, *J. Power Sources* 359 (2017) 285-294.

[S2] D. Zhu, K. Cheng, Y. Wang, D. Sun, L. Gan, T. Chen, J. Jiang, M. Liu, Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors, *ElectrochimicaActa* 224 (2017) 17-24.

[S3] B. Krüner, A. Schreiber, A. Tolosa, A. Quade, F. Badaczewski, T. Pfaff, B. M. Smarsly and V. Presser, Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors, *Carbon* 132 (2018) 220-231.

[S4] K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li and G. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors, *J. Power Sources* 378 (2018) 579-588.

[S5] D. Zhu, J. Jiang, D. Sun, X. Qian, Y. Wang, L. Li, Z. Wang, X. Chai, L. Gan and M. Liu, A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors, J. Mater. Chem. A 6 (2018) 12334-12343.
[S6] Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao and W. Q. Deng, Carbon - Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene, Angew. Chem. 129 (2017) 1-6.

[S7] G. Kim, J. Yang, N. Nakashima and T. Shiraki, Highly Microporous Nitrogen - doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function, *Chem. Eur. J.* 23 (2017) 17504-17510.