Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

S.no	Material	Structure	E _g (ev)	PCE (%)	Reference Number	year
1	MASnI₂Br	Glass/FTO/c-TiO2/m- TiO2/MASnIBr/Spiro-OMeTAD/Au	1.56	5.48	1	2014
2	CsGel ₃	Glass/FTO/c-TiO2/m-TiO2/CsGel/Spiro- OMeTAD/Au	1.64	0.11	2	2015
3	CsPb _{0.9} Sn _{0.1} IBr ₂	Glass/c-TiO2/m-TiO2/CsPbSnIBr/C	1.79	11.3	3	2017
4	CsSnIBr	Glass/FTO/c-TiO2/mp- TiO2/CsSnIBr/PTAA/Au	1.79	3.04	4	2017
5	CsPbl ₂ Br	Glass/FTO/NiOx/CsPbIBr/ZnO/C60/Ag	1.92	13.3	5	2018
6	CsPbIBr ₂	Glass/FTO/c-TiO2/CsPbIBr/Au	2.05	4.7	6	2016
7	MASnBr ₃	Glass/FTO/c-TiO2/m- TiO2/MASnBr/Spiro-OMeTAD/Au	2.15	4.56	1	2014
8	CsPbBr ₃	Glass/FTO/TiO2/CsPbBr/PTAA-TPB- LiTFSI/Au	2.36	6.24	7	2016

 Table S 1: High band gap value of organic and inorganic based perovskite materials for multi junction solar cell application.

References:

- 1. Hao, F., Stoumpos, C.C. Cao, D.H. Chang, R.P.H. and M.G. Kanatzidis. Nat. Photonics (2014), **8**,489-494.
- 2. T. Krishnamoorthy, H.Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, Li. S. Asta and M.M. Mathews , J. Mater. Chem. A ,(2015), *3*,23829–23832.
- L.J. Zhao, P. Wang, C. Wang, Y. Hu, Y.Y. Zhu, G. Ma, L. Liu, and Z. Jin J. Am. Chem. Soc. (2017)139, 14009– 14012.
- 4. S. T. Bin, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H., Wasielewski, M.R., Aramaki, and M.G.Kanatzidis, J. Am.Chem. Soc. (2017), *139*, 836–842
- 5. Liu, C. Li, W. Zhang, C. Ma, Y., J. Fan and Y. Mai. J. Am. Chem. Soc. (2018), 140, 3825–3828.
- 6. M.Q. Huang, S.Wen, X. Green, M.A. and A.W.Y. Ho-Baillie. Adv. Energy Mater. (2016,) 6, 2–6.
- 7. H. M. Huang, Z.Y. Jiang, and S. J.Luo, Chin. Phys. B., 2017, 26(9), 096301

Fig.S1 Solution pictures for (a) Cesium chloride with solvent DMF (b) Tin chloride with solvent DMF (c) Both Cesium and Tin chloride with solvent DMF (d) Cesium chloride with solvent Water (e) Tin chloride with solvent Water (f) Both Cesium and Tin chloride with solvent Water (g) Tin chloride with solvent Water (0.1M HCl) & (h) Both Cesium and Tin chloride with solvent Water (0.1M HCl)

Fig. S2 Reitveld refinement using FullProf Software for Cs₂SnCl₆

Fig. S3 XRD Pattern obtained for (MA_{0.5}Cs_{0.5})₂SnCl6 at 14.79°

Fig. S4 PL spectrum for (a) Cs_2SnCl_6 (b) MA_2SnCl_6 and (c) $(MA_{0.5}Cs_{0.5})_2SnCl_6$

Fig.S5 SAED Pictures for (a) Cs_2SnCl_6 (b) MA_2SnCl_6and (c) $(MA_{0.5}Cs_{0.5})_2SnCl_6$

Fig.S6 EDAX analysis for synthesized Cs_2SnCl_6

Fig.S7 EDAX analysis for synthesized MA₂SnCl₆

Fig.S8 EDAX analysis for synthesized (MA_{0.5}Cs_{0.5})₂SnCl_{6.}