Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information for

A novel NIR fluorescent probe for double-site and ratiometric

detection of SO₂ derivatives and its application

Jianming Zhu^a, Fengyun Qin^a, Di Zhang^{b*}, Jun Tang^a, Wenya Liu^a, Wenbo Cao^{c,*},

Yong Ye^{a,c}

^a Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China.

^b Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

^c School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China

Fig. S1 ¹H NMR chart of probe Q5 (CDCl₃, 400 MHz).

Fig. S2 ¹³C NMR chart of probe Q5 (CDCl₃, 100 MHz)

Fig. S3 ESI-HRMS spectrum of probe Q5.

Fig. S4. Absorption spectra of **Q5** (10 μ M) with gradual addition of various amounts of HSO₃⁻ (0-15 eq.) in MeOH/PBS buffer (3/7, v/v, 10 mM, pH = 7.40) solution. Inset shows linear relationship between the UV peak of the probe at 550 nm and HSO₃⁻ concentration.

Fig. S5 Fluorescence intensity of probe Q5 (10 μ M) in the presence of 10 equiv different analytes in MeOH/PBS buffer (3/7, v/v, 10 mM, pH = 7.40) solution. ($\lambda_{ex} = 580$ nm).

Ref	Probe structures	λex /λem	LOD	Double-site
			(M)	
1		520 nm/	7×	NO
		580 nm	10-8	
	СНО			
2		277 nm/	2.2 ×	NO
2	С СНО	563 nm	10-7	NO
	HO	505 1111	10	
3		450nm/	1.7×	NO
		483	10-8	
		nm/633nm		
	Ń Ś			
	<u> </u>			
4	N /	350nm/	7×	NO
		428/	10-7	
		508nm		

Table S1 Reported fluorescent probes for the detection of HSO₃-

5	HO N	400nm/ 483 nm	8.2× 10 ⁻⁷	NO
	NCCN			
6	N O+ OH	570nm/ 650nm	1.2× 10 ⁻⁷	NO
7	N ⁺ OH	405nm/ 550nm	8.5× 10 ⁻⁷	NO
8		550nm/ 630 nm	2.8× 10 ⁻⁶	NO
9	N COO	385 nm/ 475 nm	2.3× 10 ⁻⁷	NO
10	N COO N3	410 nm/ 460/ 590 nm	1.0× 10 ⁻⁷	NO
Our Work	N CHO	410 nm/ 485/ 650 nm	8.9× 10 ⁻⁸	YES

Fig. S6 Fluorescence emission spectra of compound Q5 (10 μ M) in the presence of different concentrations of HSO₃⁻ (0-15 equiv) in MeOH/PBS buffer (3/7, v/v, 10 mM, pH = 7.40) solution. Inset shows the linear responses with HSO₃⁻ concentrations ($\lambda_{ex} = 580$ nm).

Fig. S7 The ratiometric fluorescence responses (F_{485}/F_{650}) of free Q5 (10 μ M) and in the presence of 10 eq. HSO₃⁻ in MeOH/PBS buffer (3/7, v/v, 10 mM) solution with different pH conditions (λ_{ex} = 410 nm, slit = 10 nm).

Fig. S8 Kinetics of fluorescence responses (F_{485}/F_{650}) of free **Q5** (10 µM) and after the addition of HSO₃⁻ (100 µM) in PBS (pH = 7.40, 10 mM, containing 30% MeOH). (λ_{ex} = 410 nm, slit = 10 nm).

Fig. S9 Kinetics of the fluorescence responses (F_{650}) of **Q5** (10 μ M) after the addition of HSO₃⁻ (100 μ M) in PBS (pH = 7.40, 10 mM, containing 30% MeOH). (λ_{ex} = 580 nm, slit = 10 nm).

Fig. S10 The stack ¹H NMR spectrum of the mixture of probe Q5 with different concentrations of HSO_3^- (0-10 equiv) in DMSO-d6.

Reference

- 1. D. Zhang, W. Liu and K. Chen, *RSC Adv.*, 2016, **6**, 103905–103909.
- 2. X. Liu, Q. Yang, W. Chen, L. Mo and J. Kang, Org. Biomol. Chem., 2015, 13, 8663–8668.
- 3. W. Liu, D. Zhang, B. Ni, J. Li, H. Weng and Y. Ye, Sens. Actuators, B, 2019, 284, 330-336.
- 4. L. Zhang, Z. Wang, and X. Cao, Sensors. Actuators, B, 2016, 236,741–748.
- 5. T. T. Niu, T. Yu, G. X. Yin and H.T. Li, Analyst, 2019, 144, 1546–1554.
- 6. W. J. Zhang, F. J. Huo and Y. B. Zhang, Sensors. Actuators, B, 2019,297, 126747-126752.
- 7. C. C. Gao, Y. Tian, R. B. Zhang, J. Jing and X. L. Zhang, New J. Chem., 2019, 43, 5255–15259.
- 8. P. Jana, N. Patel, V. Soppin, and S. Kanvah, New J. Chem., 2019, 43, 584–592.
- 9. L. L. Yang, M. F. Liu, K. J. Sheng and X. L. Li, New J. Chem., 2019, **43**, 4188–4195.
- 10. H. Tian, J. Qian, Q. Sun, C. Jiang, R. Zhang and W. Zhang, Analyst., 2014, 139, 3373–3377.