Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance

Yunbo Zhao,^a Naishun Bu,^b Huimin Shao,^a Qian Zhang,^a Bin Feng,^a Yanmei Xu,^a Guiyue Zheng,^a Ye Yuan,^c Zhuojun Yan^{*a} and Lixin Xia^{*a}

- a. College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
 E-mail: zjyan@lnu.edu.cn; lixinxia@lnu.edu.cn
- b. School of Environmental Science, Liaoning University, Shenyang 110036, P. R. China.
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Fig. S1 (a) FTIR and (b) solid-state ¹³C CP/MAS NMR spectra for LNU-18.

Fig. S2 PXRD pattern for LNU-18.

Fig. S3 (a, b, c) SEM micrographs for LNU-18; (d) TEM micrograph for LNU-18.

Fig. S4 TGA curve for LNU-18 in air condition.

Fig. S5 PXRD patterns for LNU-18-700, LNU-18-800, and LNU-18-900.

Fig. S6 Raman spectra for LNU-18-700, LNU-18-800, and LNU-18-900.

Fig. S7 (a) XPS spectra for LNU materials; N 1s XPS for (b) LNU-18, (c) LNU-18-700, (d) LNU-18-800, and (e) LNU-18-900.

Table S1 Elemental compositions of C, N and O, and relation contents of nitrogen species to N 1s

Samples	C (at.%)	N (at.%)	O (at.%)	N _{pyrrolic} (%)	N _{triazine} (%)
LNU-18-700	84.53	1.73	13.74	67.95	32.05
LNU-18-800	85.65	3.06	11.29	81.88	18.12
LNU-18-900	86.46	2.04	11.51	74.20	25.80

Fig. S8 CV curves for (a) LNU-18-700 and (b) LNU-18-900 at different scan rates.

Fig. S9 GCD curves for (a) LNU-18-700 and (b) LNU-18-900 at different current densities.

Fig. S10 Ragone plots for LNU-18-700, LNU-18-800, and LNU-18-900.

Fig. S11 The structure for PAF-48.

Fig. S12 (a) FTIR spectra for PAF-48; (b) TGA curve for PAF-48 in N₂ condition; (c) PXRD pattern for LNU-18.

Fig. S13 (a) SEM and (b) TEM micrograph for PAF-48.

Fig. S14 (a) Nitrogen adsorption (closed)/desorption (open) isotherms for PAF-48; (b) Pore size distribution curve for PAF-48 calculated by the NLDFT method.

Fig. S15 SEM micrographs for PAF-48-700 (a), PAF-48-800 (b) and PAF-48-900 (c).

precursor	PAF-48			LNU-18		
carbon materials	PAF-48-700	PAF-48-800	PAF-48-900	LNU-18-700	LNU-18-800	LNU-18-900
0.5 A/g	125	54	52	72	269	92
1 A/g	60	46	39	65	237	77
2 A/g	41	40	28	58	211	62
3 A/g	36	37	23	54	195	55
5 A/g	31	33	20	49	169	47
10 A/g	26	28	17	39	126	34

 Table S2 Specific capacitance (F/g) of the samples at different current densities

Fig. S16 CV curves for (a) PAF-48-700, (b) PAF-48-800, and (c) PAF-48-900 at different scan rates.

Fig. S17 GCD curves for (a) PAF-48-700, (b) PAF-48-800, and (c) PAF-48-900 at different current densities.

Fig. S18 (a) Nyquist plots for PAF-48s in the frequency range from 0.01 Hz to 100 kHz in the three-electrode system; (b) Ragone plots for PAF-48s in the two-electrode system.

Sampla	Canasitanas (E/g)	Current density (A/a)	Electrolyte	Reference
Sample	Capachance (F/g)	Current density (A/g)		S
RGHs-1	230.4	0.3	6 M KOH	1
CS-OH	167	1	$1 \text{ M H}_2 \text{SO}_4$	2
IMPC	258	0.5	$1 \text{ M H}_2 \text{SO}_4$	3
NPHCMs-65-700	208	0.5	6 M KOH	4
NCS	203	0.5	6 M KOH	5
TpPa-COF@PANI	95	0.2	$1 \text{ M H}_2 \text{SO}_4$	6
NWNU-COF-1	155.38	0.25	6 M KOH	7
ACOF1	234	1	6 M KOH	8
C-800	228	1	6 M KOH	9
c-CBAP-N	203.2	1	6 M KOH	10
TAT-CMP-2	183	1	1 M Na ₂ SO ₄	11
N3-CMP	260	0.1	1 M Na ₂ SO ₄	12

Table S3 Comparison of specific capacitance data of previous reported carbon materials

References

- M. Jiang, J. L. Zhang, F. Qiao, R. Y. Zhang, L. B. Xing, J. Zhou, H. Y. Cui and S. P. Zhuo, *RSC Adv.*, 2016, 6, 48276-48282.
- [2] X. Tong, H. Zhuo, S. Wang, L. X. Zhong, Y. J. Hu, X. W. Peng, W. J. Zhou and R. C. Sun, *RSC Adv.*, 2016, 6, 34261-34270.
- [3] D. Puthusseri, V. Aravindan, S. Madhavi and S. Ogale, Energy Environ. Sci., 2014, 7, 728-735.
- [4] N. Zhang, F. Liu, S. D. Xu, F. Y. Wang, Q. Yu and L. Liu, J. Mater. Chem. A, 2017, 5, 22631-22640.
- [5] Y. L. Wang, S. Y. Dong, X. Q. Wu, X. W. Liu and M. G. Li, J. Mater. Sci., 2017, 52, 9673-9682.
- [6] S. Liu, L. Yao, Y. Lu, X. L. Hua, J. Q. Liu, Z. Yang, H. Wei and Y. Y. Mai, *Mater. Lett.*, 2019, 236, 354-357.
- [7] R. Xue, H. Guo, L. G. Yue, T. Wang, M. Y. Wang, Q. Li, H. Liu and W. Yang, New J. Chem., 2018, 42, 13726-13731.
- [8] G. Kim, J. Yang, N. Nakashima and T. Shiraki, Chem. Eur. J., 2017, 23, 17504-17510.
- [9] M. Kim, P. Puthiaraj, Y. J. Qian, Y. Kim, S. Jang, S. Hwang, E. Na, W. Ahn and S. Shim, Electrochim. Acta,

2018, 284, 98-107.

- [10] M. Kim, P. Puthiaraj, J. So, H. Seong, J. Ryu, W. Ahn and S. Shim, Synth. Met., 2018, 243, 115-120.
- [11] X. C. Li, Y. Z. Zhang, C. Y. Wang, Y. Wan, W. Y. Lai, H. Pang and W. Huang, Chem. Sci., 2017, 8, 2959-2965.
- [12] J. M. Lee, T. H. Wu, B. M. Alston, M. E. Briggs, T. Hasell, C. C. Hu and A. I. Cooper, J. Mater. Chem. A, 2016, 4, 7665-7673.