Highly conversion of CO₂ into cyclic carbonates under

solvent free and ambient pressure conditions by Fe complex

cyanide

Figure S1 SEM of (a) $Fe^{II}_{4}(Fe(CN)_{6})_{3}$, (b) $KNi_{4}(Fe^{II}(CN)_{6})_{3}$, (c) $Fe^{II}_{4}(Fe(CN)_{6})_{3}$ -cube (d) after recycle 5 times of $Fe^{II}_{4}(Fe(CN)_{6})_{3}$, (e) $KCo_{4}(Fe^{II}(CN)_{6})_{3}$, (f) $KZn_{4}(Fe^{II}(CN)_{6})_{3}$

Figure S2 XRD of $KCo_4(Fe^{III}(CN)_6)^3$, $KZn_4(Fe^{III}(CN)_6)^3$, $KNi_4(Fe^{III}(CN)_6)^3$ and

Fe^Ⅲ₄(Fe(CN)₆)₃-cube General experimental details

¹H-NMR spectra were recorded at 400 MHz. Chemical shifts (in ppm) were referenced

to CDCl₃ (δ = 7.26 ppm) in as an internal standard. ¹³C-NMR spectra were obtained at

100 MHz and were calibrated with $CDCl_3$ ($\delta = 77.0$ ppm). Products were purified by

flash chromatography on 200-300 mesh silica gels.

Analytical data for product of carbonic acid 1-phenylethylene ester

¹H NMR (400 MHz, CDCl₃) δ 7.41 (m, 3H), 7.34 (m, 2H), 5.67 (t, *J* = 8.0 Hz, 1H), 4.78 (t, *J* = 8.4 Hz, 1H), 4.30 (t, *J* = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.08 (s), 135.87 (s), 129.72 (s), 129.22 (s), 126.04

(s), 78.12 (s), 71.28 (s).

NMR spectra of compound

Table S1 Comparison with different reported metal cyanides as high-efficiency

Catalysts and	Ep	The	Reacti	Reac	TOF	Yield	Reference
mass/(mg)	oxi	pressu	on	tion	h-1	(%)	
	de	re of	tempe	time/			
	(m	CO ₂ /(rature/	(h)			
	L)	bar)	(°C)				
$Fe^{II}_{4}(Fe(CN)_{6})_{3}/(10)$	0.5	1	100	3	20.8	99	This work
DMC-Br/(20)	5	9.6	50	24	21.47	-	Catalysis Today 111 (2006) 292-
							296
Zn ₃ Co(CN) ₆ xZnCl ₂	5	9.6	80	24	22.76	-	Macromol. Symp. 2005, 224, 181-
yH2O zCA (20)							191
$Zn_3[Co(CN)_6]_2.$	-	45	110	10	38	-	Catal. Lett. Vol. 91, No. 1, 69-75
							(2007)
$Zn_3[Co(CN)_6]_22.2H_2O$	-	-	90	8	3.75	57	Applied Catalysis A: General 325
							(2007) 91–98
$Zn_3[Co(CN)_6]_2/(20)$	1.8	11.7	140	6	581	92	Applied Catalysis A: General 419–
							420 (2012) 178–184

catalyst for cycloaddition reaction.

Table S2 The data of the active energy of $Fe^{II}_{4}(Fe (CN)_{6})_{3}$ -cube

Entry	T(V)	Slope	у	2	Κ	Eact
	1 (K)		intercept	Γ2	min ⁻¹	kJ/mol
1	343	-0.00215	0.00197	0.9991	0.00215	
2	353	-0.00422	0.00775	0.9988	0.00422	(1.05
3	363	-0.00740	0.02267	0.9963	0.00740	61.05
4	373	-0.01205	0.05615	0.9902	0.01205	

Table S3 The data of the active energy of $Fe^{II}_{4}(Fe (CN)_{6})_{3}$

Entry	T(V)	Slope	у		K	Eact
	I (K)		intercept	12	min ⁻¹	kJ/mol
1	343	-0.00206	0.00047	0.9859	0.00206	
2	353	-0.00400	0.00654	0.9990	0.00400	5(02
3	363	-0.00661	0.01830	0.9971	0.00661	30.03
4	373	-0.01003	0.04007	0.9932	0.01003	

Table S4 The data of the active energy of $KNi_4(Fe^{II}(CN)_6)_3$

Entry	т (И)	Slope	у	r 2	K	Eact
	I (K)		intercept	1-	min ⁻¹	kJ/mol
1	343	-0.00315	0.00445	0.9993	0.00315	
2	353	-0.00468	0.0099	0.9982	0.00468	20.40
3	363	-0.00712	0.0210	0.9965	0.00712	39.49
4	373	-0.00943	0.0358	0.9937	0.00943	

		<u></u>	У	2	Κ	Eact
	I (K)	Slope	intercept	ľ²	min ⁻¹	kJ/mol
1	343	-0.00121	0.00072	0.9998	0.00121	
2	353	-0.00196	0.0018	0.9997	0.00196	79.24
3	363	-0.00558	0.0139	0.9964	0.00558	/8.34
4	373	-0.01002	0.0403	0.9926	0.01002	

Table S5 The data of the active energy of $KZn_4(Fe^{II}(CN)_6)_3$