Electronic Supplementary Information

Quantum Dots-Silica Composite as an Efficient Spectral Converter in a Luminescence Down-Shifting Layer of Organic Photovoltaic Devices

Hong Chul Lim^{‡,a} Ja-jung Koo^{‡,a} Jae Il Kim,^b Jin-Kyu Lee,^a Zee Hwan Kim,^a and Jong-In Hong^{*,a}

^a Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea

^b QDBrick Co, Ltd #401 Backlim Bldg., 31-3, Maeheon-ro, Seocho-gu, Seoul, Republic of Korea

jihong@snu.ac.kr (J.-I. Hong)

List of contents

- Figure S1 UV-Vis absorption and PL emission spectra of CdSe, CdSe@ZnS, and gradient QDs
- Figure S2 XRD spectrum of OA-coated gradient QDs
- Figure S3 UV-Vis absorption and PL emission spectra of QDs after acid or base treatment
- Figure S4 Photograph of QDs-silica film on a slide glass
- Figure S5 SEM images of 0.1 wt% QDs-silica thin films
- Figure S6 SEM images of QDs-silica thin films as a function of QDs concentration
- Figure S7. IPCE data of BHJ OPV devices
- Figure S8 Theoretically expected PCE values of solar cells calculated from NREL data.
- Figure S9 Photoluminescence quantum yields (PLQYs) of the as-synthesized QDs solution, LDS layer
- with 0.1 wt% QDs, and LDS layer with 0.5 wt% QDs

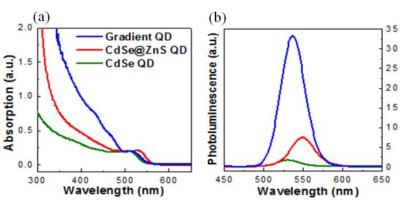


Fig. S1. (a) UV-Vis absorption and (b) PL emission spectra of CdSe (green), CdSe@ZnS (red), and gradient QDs (blue).

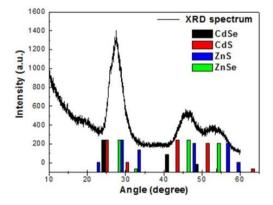


Fig. S2. XRD spectrum of OA-coated gradient QDs (black solid line) (inserted reference of bulk CdSe (black bar), CdS (red bar), ZnS (blue bar), and ZnSe (green bar)).

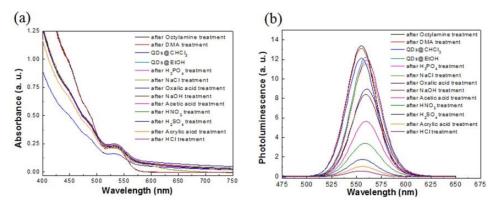
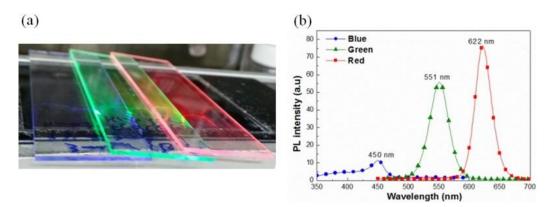
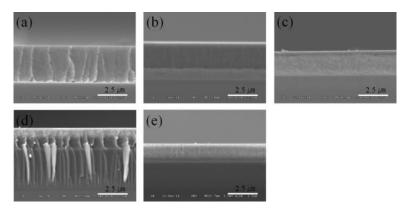
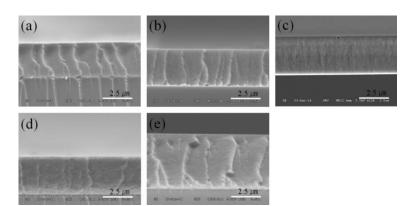
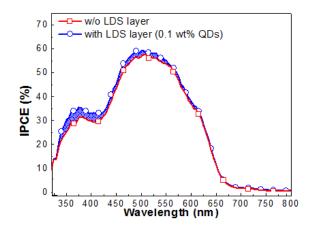
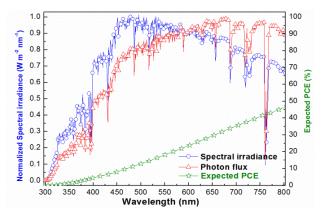


Fig. S3. Changes of (a) UV-Vis absorption, and (b) photoluminescence intensity after acid or base treatment of QDs. We injected 1 ml acid or base solution into QDs and then measured optical properties after 1 h.


Fig. S4. (a) Photograph of blue, green and red light emission (b) PL emission spectra from QDs-silica composite films on a slide glass.


Figure S5. SEM images of (a) $3.1 \mu m$, (b) $3.0 \mu m$, (c) $2.0 \mu m$, (d) $1.7 \mu m$, (e) $1.5 \mu m$ thickness of 0.1 wt% QDs-silica thin films as a luminescent down-shifting layer.

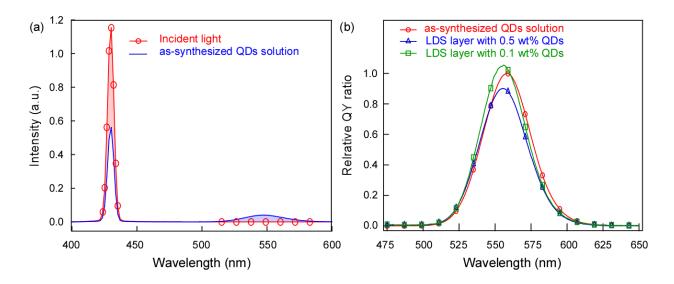

Figure S6. SEM images of (a) 0 wt%, (b) 0.1 wt%, (c) 0.2 wt%, (d) 0.3 wt%, and (e) 0.5 wt% of QDs-silica thin films.

Figure S7. IPCE data of BHJ OPV devices. (line with open circle: with the LDS layer of 0.1 wt% QDs, line with open rectangle: without the LDS layer).

Figure S8. Theoretically expected PCE values of solar cells calculated from NREL (National Renewable Energy Laboratory) data.

Figure S9. (a) Photoluminescence quantum yields (PLQYs) of the as-synthesized QDs solution in hexane (excitation: 430 nm). The PLQY was calculated to be 52.1 %. (b) PLQY ratios of the QDs solution, the LDS layer with 0.1 wt% QDs, and the LDS layer with 0.5 wt% QDs. The QYs of the LDS layers with 0.1 wt% QDs and 0.5 wt% QDs were calculated to be 53.7 and 46.7%, respectively. (line with open circle: as-synthesized QDs solution, line with open rectangle: LDS layer with 0.1 wt% QDs, and line with open triangle: LDS layer with 0.5 wt% QDs, and line with open tr

Quantum yield (QY) of QDs solution was measured to be 52.1% (Figure S9 (a)). Based on this result, the relative QYs of the LDS layers with 0.1 wt% and 0.5 wt% were estimated by eq 1 and eq 2, respectively.¹

$$QY_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs} \times \frac{Abs_{reference}}{Abs_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs}} \times \frac{PL_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs}}{PL_{reference}} \times \frac{n_{LDS \ layer^{2}}}{n_{reference}^{2}} \dots (1)$$

$$QY_{LDS \ layer \ with \ 0.1 \ wt\% \ QDs} = QY_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs} \times \frac{PL_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs}}{Conc. LDS \ layer \ with \ 0.5 \ wt\% \ QDs}} \times \frac{n_{LDS \ layer^{2}}}{n_{reference}^{2}} \dots (2)$$

Abs _{reference} Abs _{LDS layer} with 0.5 wt% QDs	$\frac{PL_{LDS \ layer \ with \ 0.5 \ wt\% \ QDs}}{PL_{reference}}$	$\frac{PL_{LDS\ layer\ with\ 0.1\ wt\%\ QDs}}{PL_{LDS\ layer\ with\ 0.5\ wt\%\ QDs}}$	PL_{LDS} layer with 0.5 wt% QDs
1.98	0.44	0.14	431.99
PL _{LDS layer} with 0.1 wt% QDs	PL _{reference}	Thickness _{LDS} layer with 0.5 wt% QDs	Thickness _{LDS layer} with 0.1 wt% QDs
60.52	982.89	4.6 <i>u</i> m	2.8 <i>u</i> m
Conc. _{LDS} layer with 0.5 wt% QDs	Conc. _{LDS layer} with 0.1 wt% QDs	$n_{LDS\ layer}$	n _{reference}
0.5	0.1	1.40	1.38

Where reference is QDs solution, QY is PLQY, Abs is absorption, PL is photoluminescence, and n denotes refractive index. The values of parameters were summarised below.

Reference

1. J. Laverdant, W. D. de Marcillac, C. Barthou, V. D. Chinh, C. Schwob, L. Coolen, P. Benalloul, P. T. Nga and A. Maître, *Materials*, 2011, **4**, 1182-1193.