Supplementary Information

Alkaline earth ion exchange study in pure silica LTA zeolites using periodic first-principles calculations

Vancho Kocevski,^{1,3,a} Shenyang Y. Hu,^{2,3} and Theodore M. Besmann,^{1,3}

¹Nuclear Engineering Program, University of South Carolina, Columbia, SC, 29208 USA

²Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA

³Center for Hierarchical Wasteform Materials (CHWM), University of South Carolina, Columbia, SC, 29208

USA

Ion (A)	$\mu^{0}_{A(vac)}$		$\mu^{0}_{A(aq)}$		
	PBE	DFT-D3	PBE	DFT-D3	
Na ⁺	5.1573	5.1573	-2.3806	-2.4920	
Ca^{2+}	18.1425	18.1425	-5.4051	-5.4369	
Sr^{2+}	16.8687	16.8687	-5.4808	-5.5223	
Ba ²⁺	15.2986	15.2986	-5.4066	-5.4183	

Table S1. Calculated standard chemical potential, in eV, of Na⁺ and alkali earth ions in vacuum (vac) and in water (aq)

The activity coefficient, γ_i , are calculated using Debye-Hückel equation:

$$\log(\gamma_i) = -\frac{Az_i^2 \sqrt{I}}{1 + Bd\sqrt{I}}, \quad I = \frac{1}{2} \sum_{i=1}^n c_i z_i^2$$

where z_i is the charge of the ion, d is the ionic diameter, in nm, I is the ionic strength, c_i is the concentration of the ion, n is total number of ion types and the sum in I is over each ionic type, i. A and B are constants calculated by fitting the experimental activity data to Debye-Hückel equation.

	-	<u>^</u>
Ion	A	B (in nm ⁻¹)
Na ⁺	1.2055 ± 0.0095	9.6338 ± 0.2340
Ca^{2+}	4.7050 ± 0.0224	8.9327 ± 0.1407
Sr^{2+}	4.6856 ± 0.0191	6.3263 ± 0.0981
Ba^{2+}	4.6856 ± 0.0191	5.6045 ± 0.0869

Table S2. Constants for activity coefficients of Na⁺ and alkali earth ions, fitted on Debye-Hückel equation.

Figure S1. Adsorption energy difference, ΔE_{ads} , on site 1 (solid line), 2 (dashed-dotted line) and 3 (dashed line) as a function of the mole fraction ratio, x_{AE}/x_{Na} , between $AE = Ca^{2+}$, Sr^{2+} and Ba^{2+} ions and Na^{+} ion, calculated using (a) PBE, and (b) DFT-D3. The Ca^{2+}/Na^{+} , Sr^{2+}/Na^{+} , and Ba^{2+}/Na^{+} are shown in yellow, red and blue, respectively.

Figure S2. Ion exchange energy, ΔE_{ie}^{q} , as a function of the electron chemical potential, ε_{f} , for ions on site 1 (solid line), 2 (dashed-dotted line) and 3 (dashed line), calculated using (a) PBE, and (b) DFT-D3. The Ca²⁺, Sr²⁺, and Ba²⁺ ΔE_{ie}^{q} are shown in yellow, red and blue, respectively. The scales in the middle show the x(AE)/x(Na) ratio at which the $\Delta E_{ads}^{q} = 0$ eV.

ions on the unce duborption sites, eared and 151 1 DS.									
Ion ·	PBE			DFT-D3					
	Site 1	Site 2	Site 3		Site 1	Site 2	Site 3		
Ca ²⁺	0.6827	1.0880	0.4903		0.7623	0.9406	0.5729		
Sr^{2+}	-0.0676	0.1476	-0.0063		-0.0703	-0.2100	0.0619		
Ba ²⁺	-0.4865	-0.2773	-0.2290		-0.5788	-0.8740	-0.4303		

Table S3. Ion exchange energies $({}^{\Delta E}{}^{0}_{ie})$, in eV, of Na⁺ with alkali earth ions on the three adsorption sites, calculated using PBE and DFT-D3.