Enhanced luminescence for detection of small molecules based on doped lanthanide compounds with dinuclear double-stranded helicate structure

Yuan-Yi Xu,^a Ou Sun,^a Yue Qi,^a Bo-Yu Xie,^a Ting Gao*^a

^aKey Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, P.R. China.

Synthesis of doped compounds

[(Sm_xGd_{1-x})₂L₂(DBM)₄(OAc)₂] IR (KBr, cm⁻¹): 3057 (w), 2844 (s), 2774 (w), 2601(w), 1733 (vs), 1690 (vs), 1555 (s), 1396 (vs), 1310 (s), 1207 (vs), 1155 (m), 1059 (m), 935 (vs), 864(w), 719 (m), 673 (w), 592 (m). UV-vis [MeOH, λ]: 210, 252, 352 nm.

[(Eu_xGd_{1-x})₂L₂(DBM)₄(OAc)₂] IR (KBr, cm⁻¹): 3061 (w), 2844 (s), 2772 (w), 2600(w), 1736 (vs), 1688 (vs), 1554 (s), 1396 (vs), 1310 (s), 1213 (vs), 1152 (m), 1058 (m), 938 (vs), 864(w), 717 (m), 672 (w), 592 (m). UV-vis [MeOH, λ]: 210, 252, 352 nm.

[(Yb_xGd_{1-x})₂L₂(DBM)₄(OAc)₂] IR (KBr, cm⁻¹): 3058 (w), 2846 (s), 2770 (w), 2598(w), 1734 (vs), 1690 (vs), 1554 (s), 1392 (vs), 1312 (s), 1215 (vs), 1154 (m), 1060 (m), 941 (vs), 864(w), 714 (m), 673 (w), 590 (m). UV-vis [MeOH, λ]: 210, 252, 352 nm.

Fig.S1 IR spectra of H₂L, Eu(DBM)₃, complexes 1-4 and Ln_xGd_{1-x}DBM.

Fig.S2 UV-vis absorption spectra of H₂L, Eu(DBM)₃, complexes 1-4 and Ln_xGd_{1-x}DBM.

2θ / Degree

Fig.S3 PXRD patterns for simulation, complexes 1-4 and Ln_xGd_{1-x}DBM.

Fig.S4 The excitation spectra of complexes 1, 2 and 4 in the solid state.

Fig.S5 (a) Luminescence decay profile for complex 1 in the solid state; (b) Luminescence decay profile for doped complex $Sm_{0.4}Gd_{0.6}DBM$ in the solid state.

Fig.S6 (a) Luminescence decay profile for complex 2 in the solid state; (b) Luminescence decay profile for doped complex $Eu_{0.22}Gd_{0.78}DBM$ in the solid state.

Fig.S7 (a) Luminescence decay profile for complex 4 in the solid state; (b) Luminescence decay profile for doped complex **Yb**_{0.1}**Gd**_{0.9}**DBM** in the solid state.

Fig.S8 Phosphorescence spectrum of $Gd_2L_2(DBM)_4(OAc)_2$ (3) at 77K.

Fig.S9 Schematic energy level diagram and energy transfer processes. S_1 : first excited singlet state and T_1 : first excited triplet state.

 $Fig. S10 \ {\rm Emission} \ {\rm spectra} \ {\rm of} \ {\rm doped} \ {\rm complex} \ Eu_{0.4}Gd_{0.6}DBM \ {\rm upon} \ {\rm incremental} \ {\rm addition} \ {\rm of} \ {\rm acetic}$

Fig.S11 Emission spectra of doped complex $Eu_{0.4}Gd_{0.6}DBM$ with increasing concentration of

Al³⁺.

Fig.S12 Emission spectra of complex $Eu_{0.4}Gd_{0.6}DBM$ with increasing concentration of $Cr_2O_7^{2-}$.

20 / Degree

⁽a)

(b)

Fig.S13 (a) PXRD patterns for $Eu_{0.4}Gd_{0.6}DBM@CH_3COOH$, Al^{3+} and $Cr_2O_7^{2-}$; (b) UV-vis absorption spectra of $Eu_{0.4}Gd_{0.6}DBM@MeOH$, $H_2L@CH_3COOH$, Al^{3+} and $Cr_2O_7^{2-}$.

Table S1 Elemental analysis of lanthanide ions by ICP for doped complexes Ln_xGd_{1-x}DBM

Complex	$Eu_{0.22}Gd_{0.78}DBM$	$Sm_{0.4}Gd_{0.6}DBM$	Yb _{0.1} Gd _{0.9} DBM
	Sm Gd	Eu Gd	Yb Gd
Wt % (Found)	40.0 60.0	22.0 78.0	10.0 90.0
Mol%	40.3 59.7	21.2 78.8	9.1 90.9

Ln ³⁺	Sm ³⁺ (1)	Eu ³⁺ (2)	Yb ³⁺ (4)
I/I ₀	1.44	1.60	2.35
$ au_0(\mu s)$	15.78 / 17.77	503.60	2.25 / 8.93
τ (μs)	42.73	765.8	31.37
ϕ_0 (%)	1.5	62.7	
φ (%)	4.2	73.5	

 $\textbf{Table S2} \ (Ln_xGd_{1-x})_2L_2(DBM)_4(OAc)_2 - \text{luminescence intensity ratio, lifetime and quantum yield}$

of Ln³⁺ ions in corresponding doped materials.

I₀, τ_0 , ϕ_0 : Ln₂L₂(DBM)₄(OAc)₂; I, τ , ϕ : doped materials – Eu_{0.4}Gd_{0.6}DBM,

 $Sm_{0.4}Gd_{0.6}DBM$ and $Yb_{0.1}Gd_{0.9}DBM$.

Table S3 The triplet energy levels of H₂L/DBM and the energy gaps $\Delta E(T_1-Ln^{3+})$

	T_1	Eu ³⁺	Sm ³⁺	Yb ³⁺
Energy level (cm ⁻¹)	20366	17500	17924	10000
$\Delta E(\mathrm{T}_{1}-\mathrm{Ln}^{3+})$		2866	2442	10366

Table S4 Elemental analysis of lanthanide ions by ICP for doped materials in target cations

Complex	$Eu_{0.4}Gd_{0.6}$	$Eu_{0.4}Gd_{0.6}DBM@Al^{3+}$	
	Al	Eu/Gd	
Mol%	48.3	51.7	