Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPORTING INFORMATION

Synthesis and spectral characterizations of water soluble Cu(II) complexes containing *N*-heterocyclic chelates: cell-proliferation, antioxidant and nucleic acid/serum albumin interactions

Materials and methods

All the reagents and starting ancestors used were analytically and chemically pure grade and the solvents were dried according to the literature procedure.¹ 8-methyl-2-oxo-1,2dihydro-quinoline-3carbaldehyde was synthesized according to the literature procedure.² Melting points were determined on Lab India apparatus. Elemental analysis of carbon, hydrogen, nitrogen and sulphur was determined by using Vario EL III CHNS at the department of chemistry, Bharathiar University, Coimbatore-641046. Infrared spectra were recorded in the range of 400-4000 cm⁻¹ (KBr pellets) on a Jasco FT-IR spectrometer. Electronic absorption spectra of the compounds were recorded using JASCO 600 spectrophotometer and emission measurements were carried out by using a JASCO FP-6600 spectrofluorometer.¹H NMR spectra were measured on Brucker DRX-500 Avance spectrometer at 500 MHz, using TMS as the internal reference in DMSO-d₆. The EPR spectra were recorded on a Brucker spectrometer operating at the X-band using 100 kHz magnetic field modulation. Molar conductivity measurements have been carried out on a conductivity bridge with a dip-type cell, using 1 mM solution of complexes in 5% aqueous DMSO.² Single crystal data collections and corrections for the ligand H_2L^2 and complexes 2, 3 and 4 were done at 293 K with CCD Kappa Diffractometer using graphite monochromated Mo Ka (k = 0.71073 A) radiation.³ The structural solution were done by using SHELXS-97⁴ and refined by full matrix least square on F2 using SHELXL-2014.⁵CT-DNA, BSA and ethidium bromide (EB) were obtained from HiMedia.

Experimental section

Preparation of ligands[H₂-8MOQtsc-R](H₂L¹⁻⁴) (R= H, CH₃, C₂H₅ and C₆H₅)

Ligand [H₂-8MOQtsc-H] was prepared by refluxing the stoichiometric solution of 4N-thiosemicarbazide (0.242 g, 2.6 mmol) and 8-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde (0.5 g, 2.6 mmol) in 20 cm³ of methanol and refluxed for about 30 minutes. During which a yellow precipitate was formed, then the reaction mixture was cooled to room temperature and the product formed was filtered, washed several times with cold methanol,

and dried under vacuum. Other ligands (H_2L^{2-4}) were also prepared by adopting the comparable procedure as in the case of ligand [H₂-8MOQtsc-H], using corresponding thiosemicarbazide i.e., methylthiosemicarbazide (0.2794 g, 2.6 mmol), ethyl thiosemicarbazide (0.3167 g, 2.6 mmol) and phenylthiosemicarbazide (0.444 g, 2.6 mmol) as summarized in scheme 1.

[H₂-8MOQtsc-H] (H₂L¹): Yield: 85 %, Mp: >263 °C. Selected IR bands ('v' in cm⁻¹): 1651 (C=O); 1563 (C=N); 839 (C=S). UV-vis (DMSO), λ_{max} : 254 (87,934) (dm³ mol⁻¹cm⁻¹) nm (intra-ligand transition); 353 (14,146) (dm³mol⁻¹cm⁻¹) nm (n→π^{*} transition); ¹H NMR (500 MHz, DMSO-d⁶): (δ, ppm): 11.62 (s, 1H, N(1)H); 10.26 (s, 1H, N(3)H); 8.49 (s, 1H, -CH=N); 8.07 (s, 1H, C(4)H); 7.75-7.77 (d, 1H, *J*=8 *Hz* C(5)H); 7.50-7.52 (t, 1H, *J*=8 *Hz*, C(6)H); 7.12-7.19 (m, 1H, C(7)H); 7.36-7.38 (d, 2H, terminal –NH₂), 2.43-2.45 (d, 3H, *J*=8 *Hz*, C(8)H, -CH₃).

[H₂-8MOQtsc-Me] (H₂L²): Yield: 87 %, Mp: >267 °C. Selected IR bands ('v' in cm⁻¹): 1654 (C=O); 1552 (C=N); 839 (C=S). UV-vis (DMSO λ_{max} : 254 (10,793) (dm³mol⁻¹cm⁻¹) nm (intra-ligand transition); 358 (17,355) (dm³mol⁻¹cm⁻¹) nm (n→π^{*} transition); ¹H NMR (500 MHz, DMSO-d⁶): (δ, ppm): 11.67 (s, 1H, N(1)H); 11.16 (s, 1H, N(3)H); 8.67 (s, 1H, N(4)H), 8.59-8.60 (d, 1H, *J*=4 *Hz*, -CH=N, C(1)H), 8.30 (s, 1H, C(4)H), 7.52-7.54 (d, 1H, *J*=8 *Hz*, C(5)H), 7.38-7.39 (d, 1H, *J*=8 *Hz*, C(6)H), 7.14-7.17 (t, 1H, *J*=12 Hz, C(7)H) 3.05-3.06 (d, 3H, *J*=4 Hz, terminal –CH₃). 2.44 (S, 3H, C(8)H, -CH₃).

[H₂-8MOQtsc-Et] (H₂L³): Yield: 81 %, Mp: >265 °C. Selected IR bands ('v' in cm⁻¹): 1644 (C=O); 1529 (C=N); 858 (C=S). UV-vis (DMSO), λ_{max} : 252 (13,549) (dm³ mol⁻¹cm⁻¹) nm 316 (45,781) (dm³ mol⁻¹cm⁻¹) nm (intra-ligand transition); 359 (16,430) (dm³mol⁻¹cm⁻¹) nm (n \rightarrow π^{*} transition); ¹H NMR (500 MHz, DMSO-d⁶): (δ, ppm): 11.61 (s, 1H, N(1)H), 11.15 (s, 1H, N(3)H), 8.67-8.61 (q, 2H, *J*=24Hz, N(4)H & -CH=N), 8.31(s, 1H, C(4)H), 7.56-7.54 (d, 1H, *J*=8 Hz, C(5)H), 7.38-7.39 (d, 1H, *J*=4 Hz, C(6)H), 7.13-7.17 (t, 1H, *J*=16 Hz, C(7)H), 3.60-3.66 (p, 2H, *J*=24 Hz, terminal –CH₂), 1.17-1.20 (t, 3H, *J*=12 Hz, terminal –CH₃), 2.44 (s, 3H, -CH₃, C(8)).

[H₂-8MOQtsc-Ph] (H₂L⁴): Yield: 89 %, Mp: > 267 °C. Selected IR bands ('v' in cm⁻¹): 1653 (C=O); 1526 (C=N); 826 (C=S). UV-vis (DMSO), λ_{max} : 261 (13,549) (dm³ mol⁻¹cm⁻¹) nm (intra-ligand transition); 363 (16,430) (dm³ mol⁻¹cm⁻¹) nm (n $\rightarrow\pi^*$ transition); ¹H NMR (500 MHz, DMSO-d⁶): (δ , ppm): 12.01 (s, 1H, N(1)H), 11.18 (s, 1H, N(3)H), 8.86

(s, 1H, N(4)H), 8.42 (s, 1H, -CH=N, C(1)H), 7.13-7.59 (m, aromatic protons), 2.45 (s, 3H, -CH₃, C(8)).

Deoxy-Ribo Nucleic acid interaction

CT-DNA binding experiment was performed according to the previously reported literature procedure.⁶

Ethidium-bromide to CT-DNA displacement studies

According to the literature procedure,⁶ EB-DNA displacement experiment was carried out.

Viscosity studies

For viscosity measurements, the Ubberhold viscometer (1 Ml capacity) was thermostated in a water bath maintained at 25 °C. The flow time for each sample was measured thrice using digital stopwatch and an average flow time was calculated. The flow rate for buffer (10 mM Tris), DNA (100 μ M) and DNA with the copper(II) complexes at various concentrations (5-50 μ M) was measured. The relative specific viscosity was calculated using the equation, $\eta = (t - t_0)/t_0$, where t_0 is the flow time for the buffer and t is the observed flow time for DNA in the absence and presence of the complex. Data are presented as $(\eta/\eta_0)^{1/3}$ versus 1/R {R = [complex]/ [DNA]}, where h is the viscosity of DNA in the presence of the complex and η_0 is the viscosity of DNA alone.^{7,8}

Protein binding

According to the literature procedure,^{8,9} the serum albumin (BSA/HSA) bindings and three dimensional fluorescence spectra were carried out for all the ligands/complexes.

Radical scavenging assays

DPPH and OH radical scavenging assays were done according to the literature methods.^{10,11}

MTT cell viability assay

According to the literature procedure,¹² the cytotoxic effects of *N*-heterocyclic ligands H_2L^{1-4} , copper(II) complexes (1-4) and standard drugon MCF-7 and HaCaT cells were determined by MTT reduction assay. Further, AO/EB dual staining and DAPI staining assay were carried out by the previously reported literature.¹³

Fig. S4 FT-IR spectra of ligand H_2L^4 .

Fig. S8 FT-IR spectra of Complex 4.

Fig. S9¹H-NMR spectrum of H_2L^1

Fig. S10 ¹H-NMR spectrum of H_2L^2

Fig. S11¹H-NMR spectrum of H_2L^3

Fig. S12 ¹H-NMR spectrum of H₂L⁴

Fig. S13 Molecular packing diagram of H_2L^2

Fig. S14 Hydrogen bonding diagram of $H_2 L^2\,$

Fig. S15 Molecular packing diagram of [Cu(H₂-8MOQtsc-Me)(NO₃)(H₂O)][•]NO₃ (2).

Fig. S16 Hydrogen bonding diagram of [Cu(H₂-8MOQtsc-Me)(NO₃)(H₂O)][·]NO₃ (2)

Fig. S17 Molecular packing diagram of [Cu(H₂-8MOQtsc-Et)((H₂O)(NO₃)]n.NO₃ (3).

Fig. S18 Polymeric structure of [Cu(H₂-8MOQtsc-Et)((H₂O)(NO₃)]n.NO₃ (3).

 $Fig. \ S19 \ \text{Hydrogen bonding diagram of } [Cu(H_2-8MOQtsc-Et)((H_2O)(NO_3)]n.NO_3\ (3).$

Fig. S20 Molecular packing diagram of [Cu(H-8MOQtsc-Ph)(H₂O)].(NO₃) (4)

Fig. S21 Hydrogen bonding diagram of[Cu(H-8MOQtsc-Ph)(H₂O)].(NO₃) (4)

Fig. S22 Absorption spectra of ligands and complexes (10 μ M) in the absence and presence of increasing the concentration of CT-DNA (0-100 μ M) at room temperature in 5 mM Tris-HCl/50 mM NaCl buffer(pH = 7.2).

Fig. S23 Plots of [DNA] versus [DNA]/ ε_{a} - ε_{f} for ligands (H₂L¹⁻⁴).

Fig. S24 Emission spectra of EB (5 μ M) bound to DNA (5 μ M) in absence and presence of ligands and complexes (0-100 μ M) using Tris-HCl/50 mM NaCl buffer (pH = 7.2).

Fig. S25 Stern volmer plots of EB + DNA of the fluorescent titration of the ligands $(H_2 L^{1\text{-}4}).$

Fig. S26 absorption spectra of BSA (10 μ M) in presence of ligands and complexes (10 μ M).

Fig. S27 Florescence spectra for titration of BSA (10 μ M) with increasing amounts of ligands and complexes (10-100 μ M), at pH = 7.2.

Fig. S28 Stern-Volmer plot for ligands Fig. S29 Scatchard plot for ligands with BSA.With BSA.

Fig. S30 Synchronous spectra of BSA (10 μ M) as a function of concentration of ligands/complexes (10-100 μ M) with $\Delta\lambda = 60$ nm.

Fig. S31 Three-dimensional spectra of BSA (10 μ M) in the (BSA) absence and presence of the test ligands and complexes (10 μ M). The contour plots of the corresponding three-dimensional diagrams are provided in the same row of each.

Table. S1. EPR spin Hamiltonian parameters as a consequence of changing N(4) terminal substitutions in copper(II) complexes

Complexes	giso	g	g⊥	g _{av}
1	-	2.2082	2.1381	2.1617
2	2.0447	-	-	-
3	-	2.2271	2.1772	2.1938
4	2.0273	-	-	-

Table. S2. Selected bond lengths (Å) and bond angles [°] for H_2L^2

Bond lengths		Bond angles	
S1-C11	1.686 (2)	C1-N1-C9	124.9 (2)
O1-C1	1.245 (3)	C10-N2-N3	116.21(19)
N1-C1	1.366 (3)	C11-N3-N2	119.6 (2)
N2-C10	1.281 (3)	C11-N4-C13	123.3 (2)
N2-N3	1.373 (3)	O1-C1-N1	120.8 (2)
N3-C11	1.358 (3)		
N4-C11	1.325 (3)		
N4-C13	1.455 (3)		

D-H···A	D-H	Н…А	D····A	<i>D</i> -H···A
N1-H1 <i>N</i> …O1 ⁱ	0.87 (3)	1.98 (3)	2.833 (3)	166 (3)
$N3-H3N\cdots S1^{iii}$	0.95 (3)	2.43 (3)	3.373 (2)	174 (2)

Table. S3. Hydrogen bonds for ligand H_2L^1 (Å and °)

Symmetry codes; (i) -x+1,-y,-z+1; (ii) -x,-y+1,-z+1; (iii) -x,-y+2,-z+1.

Table. S4. Selected bond lengths (Å) and bond angles [°] for complex ${\bf 2}$

Bond lengths		Bond angles	
Cu1-O1	1.9217 (8)	O1- Cu1-O2	85.31 (4)
Cu1-O2	1.9569 (8)	Cu1-O1-N2	91.07 (4)
Cu1-N2	1.9794 (9)	O1-Cu1-S1	171.55 (3)
Cu1-S1	2.2858 (3)	O2- Cu1-N2	173.58 (4)
Cu1-O3	2.2984 (9)	O2- Cu1-S1	96.06 (3)
		N2- Cu1-S1	86.76 (3)
		O1- Cu1-O3	94.03 (4)
		O2- Cu1-O3	86.98 (4)
		N2- Cu1-O3	98.57 (3)
		S1- Cu1-O3	94.37 (3)

Table. S5. Hydrogen bonds for Complex 2 (Å and °)

D-H···A	D-H	Н…А	D…A	<i>D</i> -Н…А
O2-H21···O6	0.80 (2)	1.87 (2)	2.6526(12)	167.0 (19)
O2-H22····O4 ⁱ	0.81 (2)	1.99 (2)	2.7958 (14)	170.7 (19)
N1-H1 <i>N</i> ····O3 ⁱ	0.870 (17)	2.113 (17)	2.9339 (13)	157.2 (15)
N3-H3 <i>N</i> ····O7 ⁱⁱ	0.866 (17)	1.914 (17)	2.7742 (12)	171.9 (16)
N4-H4N····O8 ⁱⁱ	0.842 (18)	2.019 (18)	2.8588 (13)	174.6 (16)

Symmetry codes; (i) -x+1, -y+1, -z+1; (ii) x,y,z+1; (iii) -x+2,-y+1,-z+1 (iv) x+1,y,z.

Bond longths	Rond angles			
Donu lenguis		Donu angles		
Cu1-O1	1.9087 (5)	S1-Cu1-O1	178.03(2)	
Cu1-O2	1.9537 (5)	S1-Cu1-O2	94.83(2)	
Cu1-N2	1.9797 (5)	S1-Cu1-O3	87.14(2)	
Cu1-S1	2.2622 (2)	S1-Cu1-N2	87.11(2)	
Cu1-O3	2.4383 (5)	S1-Cu1-O5	96.06(2)	
Cu1-O5	2.5912(6)	O1-Cu1-O2	85.97(2)	
		01-Cu1-O3	94.58(2)	
		O1-Cu1-N2	91.92(2)	
		01-Cu1-O5	82.07(2)	
		O2-Cu1-O3	95.59(2)	
		O2-Cu1-N2	174.15(2)	
		O2-Cu1-O5	95.48(2)	
		O3-Cu1-N2	90.01(2)	
		O3-Cu1-O5	168.17(2)	
		N2-Cu1-O5	78.81(2)	

Table. S6. Selected bond lengths (Å) and bond angles [°] for complex 3.

Table. S7. Hydrogen bonds for Complex 3 (Å and °).

D-H···A	D-H	Н…А	D····A	D-H…A
O2-H21···O6	0.833 (14)	1.873 (14)	2.6785 (17)	162.2 (14)
O2-H22····O4 ⁱ	0.852 (14)	1.960 (14)	2.7902 (7)	164.3 (13)
N1-H1····O3 ⁱ	0.83 (1)	2.12 (1)	2.9008 (7)	157 (1)
N3-H3N····O7 ⁱⁱ	0.82 (1)	1.95 (1)	2.7670 (7)	177 (1)
N4-H4N····O8 ⁱⁱ	0.81 (1)	2.00 (1)	2.7917 (8)	168 (1)

Symmetry codes; (i) -x+1, -y+1, -z+1; (ii) x,y,z+1; (iii) -x+1,-y+1,-z+2.

Table. S8. Selected bond lengths (Å) and bond angles [°] for complex 4.

Bond lengths		Bond angles	
Cu1-O1	1.9507 (13)	O1- Cu1-O2	85.19 (6)
Cu1-O2	1.9533 (14)	01- Cu1-N2	93.06 (6)
Cu1-N2	1.9614 (15)	O1-Cu1-S1	176.30 (4)
Cu1-S1	2.2454 (5)	O2- Cu1-N2	165.03 (6)
		O2- Cu1-S1	96.92 (4)

	N2- Cu1-S1	85.68 (4)
--	------------	-----------

Table. S9.Hydrogen bonds for Complex 4 (Å and °).

D-H···A	<i>D</i> -Н	Н…А	D····A	D-H···A
O1-H21···O3A	0.83 (2)	1.98 (2)	2.807 (8)	173 (3)
N1-H1 <i>N</i> ···O4A	0.83 (2)	2.15 (2)	2.951 (3)	162 (2)
N4-H4 N ····O5 A^i	0.81 (2)	2.17 (2)	2.963 (3)	165 (2)

Symmetry codes; (i) -x+3/2, y, -z+1.

Table. S10. The K_b (binding constant), K_{sv} (Quenching constant) and K_{app} (apparent with EB) values for the interactions of the ligands (**H**₂**L**¹⁻⁴) with CT-DNA.

Compounds	K_b/M^{-1}	K_{sv}/M^{-1}
H_2L^1	$3.45 \times 10^4 \pm 0.22$	$1.71\times10^4{\pm}0.20$
H_2L^2	$2.75\times10^4{\pm}0.19$	$1.68\times10^4{\pm}0.09$
H_2L^3	$5.01\times10^4{\pm}0.13$	$2.09\times10^4{\pm}0.18$
H_2L^4	$7.01\times10^4{\pm}0.16$	$2.34\times10^4{\pm}0.07$

Table. S11. Quenching constant (\mathbf{K}_{sv}), binding constant (\mathbf{K}_{bin}) and number of binding sites (**n**) for the interactions of ligands ($\mathbf{H}_2\mathbf{L}^{1-4}$) with BSA

Compounds	K _{sv} /M ⁻¹	K _b /M ⁻¹	n
H_2L^1	$1.61\times10^3{\pm}0.14$	$8.26\times10^3{\pm}0.15$	1.01
H_2L^2	$1.34\times10^3{\pm}0.11$	$3.68\times10^3{\pm}0.22$	1.18
H_2L^3	$1.89\times10^3{\pm}0.17$	$7.96\times10^3{\pm}0.19$	1.91
H_2L^4	$8.35 \times 10^3 \pm 0.29$	$8.91\times10^3{\pm}0.14$	1.21

Compounds	Peak 'a'			Peak 'b'		
	Peak	Stokes	Intensity	Peak	Stokes	Intensity
	position	$\Delta\lambda(nm)$	(F)	position	Δλ(nm)	(F)
	λex/λem			λex/λem		
	(nm/nm)			(nm/nm)		
BSA	280/335	55	972.26	230/326	96	897.74
$BSA+H_2L^1$	280/326	46	875.45	230/322	92	747.51
$BSA+H_2L^2$	280/328	48	760.65	230/319	89	715.16
$BSA+H_2L^3$	280/330	50	591.74	230/325	95	765.91
$BSA+H_2L^4$	280/334	54	766.52	230/320	90	625.98

Table. S12. Three-dimensional fluorescence spectral characteristics of bovine serum albumins and BSA-ligand systems.

References

- 1. M. K. Singh, A. Chandra, B. Singh and R.M. Singh, *Tet. Lett.*, 2007, **48**, 5987–5990.
- 2. F. E. Mabbs, D. J. Machin, Magnetism, Transition Metal Complexes; Chapman and Hall: London, 1973.
- 3. R. H. Blessing, Acta Crystallo. Sect. A. 1995, **51**, 33-38.
- G. M. Sheldrick, SHELXTL Version 5.1, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Siemens Analytical X-ray Instruments, Madison, WI, 1990.
- G. M. Sheldrick, Shelxl-97, A Program for Crystal Structure Refinement Release 97-2, Institut fur Anorganische Chemie der Universitat Gottingen, Tammanstrasse 4, D-3400,Gottingen, Germany, 1998.
- 6. P. Kalaivani, C. Umadevi, R. Prabhakaran, F. Dallemer and P.S. Mohan, *Inorg. Chim. Acta.*, 2015, **438**, 264–276.
- C. Balachandran, J. Haribabu, K. Jeyalakshmi, N.S.P. Bhuvanesh and S. Awale, J. Inorg. Biochem., 2018, 182, 208-221.
- D. Rogolino, A.Cavazzoni, A. Gatti, M. Tegoni and M. Carcelli, *Eur. J. Med. Chem.*, 2017, **128**, 140-153.
- 9. Z. Cheng, R. Liu and X. Jiang, *Spectrochim. Acta Part A*, 2013, **115**, 92–105.
- 10. M. S. Blois, Nature, 1958, **181**, 1199.
- 11. T. J. Nash, *Biochem.*, 1953, **55**, 416-421.
- 12. B. Zhao and M. Hu, Oncol. Lett., 2013, 55, 1749-1755.
- C. Elamathi, A. Madankumar, W. Kaminsky and R. Prabhakaran, *Inorg. Chim. Acta*, 2019, 496, 119039.