Electronic Supplementary Information (ESI) for New Journal of Chemistry

Ethinyl estradiol cocrystals assembled by chains structures: improvement in stability and solubility

Rongkai Du,^a Juan Xu,^b Lei Zhang,^a Lifeng Ning,^{*b} Shan Li^{*a}

^a School of Biology and Biological Engineering, South China University of

Technology, Guangzhou 510006, PR China

^b National Research Institute for Family Planning, Beijing 100081, PR China

* Corresponding authors.

E-mail address: 8205956@qq.com (L. F. Ning)

lishan@scut.edu.cn (S. Li)

Table of content:

Figure S1	Experimental and simulated PXRD patterns of EE and cocrystals.
Figure S2	¹ H NMR spectra of EE and cocrystals.
Figure S3	FTIR spectra of EE and cocrystals.
Figure S4	The "hub" in the EE-NA cocrystal.
Figure S5	The stability and dissolution performance of EE-TET H ₂ O.
Figure S6	The comparison of high humidity stability samples of EE and EE
	hemihydrate simulation by PXRD
Figure S7	Impurity analysis of stability experiments for all cocrystals.

Fig. S1 Overlay of experimental (black) and the simulated (red) PXRD patterns generated from the single crystal diffraction data.

Fig. S2 $^1\!\mathrm{H}$ NMR spectra of EE and its cocrystals.

Fig. S3 FTIR spectra of EE and its cocrystals.

Fig. S4 The "hub" observed in the EE-NA crystal.

The dehydrated product of EE-TET·H₂O is a new anhydrous cocrystal, because its unique PXRD pattern is different from that of EE-TET·H₂O. The dissolution performance of EE-TET is similar to EE-TET·H₂O. The results of stability and hygroscopicity experiments suggest EE-TET can turn into EE-TET·H₂O in humidity environment.

Fig. S5 The stability and dissolution performance of EE-TET·H₂O. (a) dissolution performance, (b) hygroscopicity, (c) stability and (d) the impurity analysis of stability experiments of EE-TET.

Fig. S6 The comparison of high humidity stability samples of EE and EE hemihydrate simulation by PXRD¹.

Fig. S7 Impurity analysis of stability experiments for all cocrystals. (a) EE, (b) EE-NA, (c) EE-PZ, (d) EE-TET \cdot H₂O, (e) EE-BIP and (f) EE-IZ.

References:

1. C. Guguta, I. Eeuwijk, J. M. M. Smits and R. de Gelder, Cryst. Growth Des., 2008, 8, 823-831