Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

For

Polymer immobilized Tantalum(V)-amino acid complexes as selective and recyclable heterogeneous catalysts for oxidation of olefins and sulfides with aqueous H_2O_2

Gangutri Saikia, Kabirun Ahmed, Chandrasee Rajkhowa, Mitu Sharma, Hiya Talukdar and Nashreen S. Islam*

Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.

*To whom correspondence should be addressed: Fax: +91-3712-267006 E-mail: nsi@tezu.ernet.in nashreen.islam@rediffmail.com

> Address: Prof. Nashreen S. Islam Dept. of Chemical Sciences Tezpur University Napaam, Tezpur-784028 Assam, India

Phone : +91-9435380222 (Off.) +91-3712-267007

Compound	d % found from element analysis							% O ₂ ²-	Ta:O ₂ ² -	Metal
	(% obtained from EDX apectra)									loading ^a
	C H N O Na Cl Ta									(mmolg-1)
MRAsn	77.96	7.18	6.98							
	(77.31)		(7.02)	(15.67)						
Catalyst 1	67.27	6.33	6.37							
	(67.01)		(6.28)	(19.25)	(0.80)		(6.66)	2.4	1:2	0.37
MRArg	76.59	7.0	9.67							
	(76.80)		(9.88)	(12.04)		(1.28)				
Catalyst 2	65.90	6.16	8.89							
	(65.51)		(8.71)	(18.51)	(1.09)	(0.30)	(5.88)	2.3	1:2	0.32
Observed metal % X 10										
"Metal loading =			Atomic weight of metal							
]					40 -				
	50-			7	,	35 (b)			Ţ	
(a)					(b);	30 -				
$\begin{bmatrix} 50\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$										

Table S1: Analytical data of the complexes ${\bf 1}$ and ${\bf 2}$

Adsorbed volume

30 -

20 -

10 -

0 -

0.0

0.2

0.4

 P/P°

0.6

Fig. S1 Adsorption/desorption isotherm of complexes (a) 1 and (b) 2

1.0

0.8

Adsorbed volume

20

15 · 10 ·

5.

0

-5

0.0

0.2

0.4

P/P^o

0.6

0.8

1.0

Fig. S2 IR spectra of (a) **MRArg**, (b) catalyst **2** and (c) catalyst **2** after 5th cycle of reaction.

Assignments		MR	MRAsn	Catalyst 1	MRArg	Catalyst 2
v(C-Cl)	(IR)	1264(m)	-	-	-	-
	(R)	1263(m)				
v(C=O,	(IR)		1629(s)	1630(s)		
amide I)	(R)		1621(m)	1624(m)		
$v_{s}(CN_{3}H_{5}^{+})$	(IR)				1627(s)	1631(s)
	(R)				1622(m)	1624(m)
v _{as} (COO)	(IR)		1598(s)	1601(s)	1599(s)	1602(s)
	(R)		1597(sh)	1599(sh)	1596(sh)	1600(sh)
v _s (COO)	(IR)		1422(sh)	1353(s)	1421(sh)	1352(s)
	(R)		1461(m)	1362(m)	1466(m)	1385(s)
v(C-N)	(IR)		1085(vw)	1088(vw)	1089(vw)	1088(vw)
	(R)		1091(vw)	1090(vw)	1091(vw)	1088(vw)
v(O-O)	(IR)			805(s),839(m)		804(s),839(m)
	(R)			819(m),855(m)		821(m),858(m)
v_{as} (M-O ₂)	(IR)			526(m)		523(m)
	(R)			571(m)		575(m)
v _s (M-O ₂)	(IR)			-		-
	(R)			550(sh)		550(sh)

Table S2: Infrared (IR) and Raman (R) spectral data for the polymer support, amino acid linked Merrifield resin and polymer immobilized peroxotantalates^a

^as, strong; m, medium; vw, very weak; sh, shoulder.

Fig. S3 Diffuse reflectance UV-visible spectra of Catalyst 1.

Fig. S4 Diffuse reflectance UV-visible spectra of Catalyst 2.

Fig. S5 Solid state ¹³C NMR spectra of (a) **MRArg** and (b) Catalyst **2**

Table S3 ¹³C NMR chemical shifts for MR, amino acid linked MR and polymer bound catalysts 1 and 2

	Chemical shift (ppm)									
-	Merrifield resin					Amino acid				
-	Quaternary	Protonated	Aliphatic	CH ₂ Cl	C-NH	C=NH/	Car	boxylate		
Compound	Aromatic	Aromatic	Methine			CONH_2	Free	Complexed		
	Carbons	Carbons	Carbons							
MR	145.18	128.36	41.04	46.17						
MRAsn	145.16	128.96	40.45		64.44	179.89	181.59			
Catalyst 1	145.52	128.14	40.81		64.57	179.94	-	219.89		
MRArg	145.82	128.35	40.35	46.24	64.79	167.59	181.03			
Catalyst 2	145.52	128.59	40.55	46.44	64.57	167.46		219.96		

Compound	Temperature range (°C)	Observed weight loss (%)	Final residue(%)
	35-95	3.5	
MRAsn	148-257	12.5	13.1
	263-698	70.9	
	35-92	2.8	
Catalyst 1	104-146	2.5	
	147-299	8.7	26.1
	302-699	59.9	
	40-95	1.7	
MRArg	155-239	9.4	13.9
	264-698	75.0	
	35-98	2.7	
Catalyst 2	104-145	2.4	
	150-291	8.4	24.9
	293-699	61.6	

Table S4: TGA data for amino acid functionalized MR and polymer bound pTa catalysts.

		Catalyst 1, 30% H ₂ O ₂ Solvent						
	1		<u> </u>	1a	T 1 . 1	1b	month	TOP
Entry	Molar ratio	H_2O_2	Solvent	Time	Isolated	la:1b	TON	TOF
	(Ta:MPS)	(equiv.)		(min)	yield			(h^{-1})
1	1:1000	2	-	95	95	78:22	950	601
2	1:1000	2	H_2O	180	56	54:46	560	187
3	1:1000	2	CH ₃ CN	180	82	92:8	820	273
4	1:1000	2	EtOH	180	89	96:4	890	297
5	1:1000	2	MeOH	160	98	100:0	980	367
6	1:1000	1	MeOH	180	87	100:0	870	290
7	1:1000	3	MeOH	100	97	100:0	970	581
8	1:1000	4	MeOH	40	97	100:0	970	1447
9	1:1500	4	MeOH	140	98	100:0	1484	637
10	1:2000	4	MeOH	180	96	100:0	1920	640
11	1:500	4	MeOH	25	95	61:39	475	1130
12 ^d	-	4	MeOH	40	14	59:41	-	-
13 ^e	1:1000	4	MeOH	40	38	68:32	380	567
14^{f}	1:1000	4	MeOH	20	98	69:31	980	2969

Table S5: Optimization of reaction conditions for catalyst **1** catalyzed selective oxidation of methyl phenyl sulfide (MPS) to sulfoxide by $30\% H_2O_2^a$

^aReactions were carried out with 5 mmol of substrate, 30 % H_2O_2 in 5 mL of solvent at room temperature. Catalyst (13.5 mg for 0.005 Ta). ^bTON (turn over number)= mmol of product per mmol of catalyst. ^cTOF(turn over frequency)= mmol of product per mmol of catalyst per hour. ^dBlank experiment without any catalyst. ^eUsing Na₃[Ta(O₂)₄]·H₂O as catalyst (2.0 mg, 0.005 mmol Ta). ^fReaction conducted at 60 °C under optimum condition. Values in bold signify optimized reaction condition.

			Conditions	Conversion			
Entry	Catalyst	Catalyst	[Time,	/Sulfoxide	TON/	Reusability	Ref.
		amount	Temperature,	Selectivity	$TOF(h^{-1})$		
			Solvent]	(%)			
1	$[Ta(O_2)_2(Asn)_2]^MR$	0.002	40 min, RT,	100/100	970/1447	5 th cycle	This
		mmol	MeOH				work
2	$[Ta(O_2)_2(Arg)_2]^MR$	0.002	70 min, RT,	100/100	950/812	5 th cycle	This
		mmol	МеОН				work
3	TaCl ₅	0.02	2.5 h, RT,	100/95			14a
		equiv.	CH ₃ CN				
4	TaC	0.02	1.25 h, 45 °C,	100/99		4 th cycle	54
		equiv.	CH ₃ OH				
5	Modified Ta-MCM	0.012	24 h, RT,	60-80/>80	/1-2.5	2 nd cycle	6b
	with DET or DIPT	mmol	CH ₃ OH				
1							

Table S6: Comparison of catalytic performance between complexes 1 and 2(this work) and literature reported Ta-based catalysts for sulfide oxidation using H_2O_2 as oxidant

Text S1: Calculations of efficiency of hydrogen peroxide in the sulfoxidation reaction systems

The calculations are shown with oxidation of styrene and methyl phenyl sulfide (MPS) to styrene oxide and methyl phenyl sulfoxide, respectively with catalyst 1 as a representative example.

 H_2O_2 efficiency (%) = 100 × [mole of H_2O_2 consumed in the formation of oxyfunctionalized products / mole of H_2O_2 converted]

(a) Assuming that one mole of oxidant reacts with one mole of substrate.

(b) The spent catalyst was separated from the reaction mixture simply by centrifugation. The H_2O_2 left was estimated by titration with standard cerium (IV) solution.

1. In styrene oxidation

 H_2O_2 (mole) consumed in the formation of styrene oxide (yield: 99.4 %) from 5 mmol styrene = **4.97** mmol.

The titrated value was found to be: 4.34 mmol

Since 10 mmol H_2O_2 has been originally used for the reaction.

Therefore, total mole of H_2O_2 converted = (10-4.34) mmol = 5.66 mmol

Thus, H_2O_2 efficiency = $100 \times [4.97/5.66]$

= 87.8%

2. In sulfide oxidation

 H_2O_2 (mole) consumed in the formation of sulfoxide (yield: 97%) from 5 mmol sulfides =

4.85 mmol.

The titrated value was found to be: 14.98 mmol

Since 20 mmol H_2O_2 has been originally used for the reaction.

Therefore, total mole of H_2O_2 converted = (20-14.98) mmol = 5.02 mmol

Thus, H_2O_2 efficiency = $100 \times [4.85/5.02]$

= 96.6%

Text S2: Characterization of Sulfoxides:

- (1) Methylphenylsulfoxide: Isolated as light yellow solid; mp 28-29°C; v (KBr)/cm⁻¹ 1048;
 ¹H NMR (400MHz; CDCl₃, δ): 2.75(s, 3H); 7.31-7.36(m, 1H); 7.42-7.47(m, 2H); 7.61-7.68(m, 2H)
 ¹³C NMR (100.5MHz; CDCl₃, δ): 43.87; 123.54; 129.12; 131.02; 145.42
- (2) Dimethylsulfoxide: Isolated as liquid; v (KBr)/cm⁻¹ 1055;
 ¹H NMR (400MHz; CDCl₃, δ): 2.65(s, 6H)
 ¹³C NMR (100.5MHz; CDCl₃, δ): 40.54
- (3) Dibutylsulfoxide: Isolated as white solid; mp 32-33°C; v (KBr)/cm⁻¹ 1063;
 ¹H NMR (400MHz; CDCl₃, δ): 0.98(t, 6H, J=7.41Hz); 1.39-1.50(m, 4H); 1.66-1.78(m, 4H);
 2.62-2.69(m, 4H)
 ¹³C NMR (100.5MHz; CDCl₃, δ): 13.44; 22.17; 24.54; 51.91
- (4) Ethylphenylsulfoxide: Isolated as pale yellow liquid; v (KBr)/cm⁻¹ 1055;
 ¹H NMR (400MHz; CDCl₃, δ): 1.25(t, 3H, J=6.61Hz); 2.70-2.79(q, 1H, J=6.58Hz); 2.93(q, 1H, J=6.61Hz) 7.13-7.48(m, 3H); 7.50-7.84(m, 2H)
 ¹³C NMR (100.5MHz; CDCl₃, δ): 10.41, 47.19, 125.44, 129.88, 131.47, 145.69
- (5) Methyl-p-tolylsulfoxide: Isolated as pale yellow liquid; mp 42-45 °C; ν (KBr)/cm⁻¹ 1036
 ¹H NMR (400MHz; CDCl₃, δ): 7.55 (d, 2H), 7.36 (d, 2H), 2.71 (s, 3H), 2.42 (s, 3H)

¹³C NMR (100.5MHz; CDCl₃, δ): 142.60, 141.57, 129.93, 123.59, 44.11, 21.41

- (6) 2-Phenylthio ethanol: Isolated as light brown solid; mp 42-43°C; v (KBr)/cm⁻¹ 1041;
 ¹H NMR (400MHz; CDCl₃, δ): 2.47(s, 1H); 3.13(t, 2H, J=5.31Hz); 3.77(t, 2H, J=5.26Hz);
 7.29-7.39(m, 1H); 7.48-7.57(m, 2H); 7.64-7.68(m, 2H)
 ¹³C NMR (100.5MHz; CDCl₃, δ): 56.18; 61.06; 125.47; 129.98; 131.53; 144.55
- (7) Allylphenylsulfoxide: Isolated as pale yellow liquid; v (KBr)/cm⁻¹ 1045;
 ¹H NMR (400MHz; CDCl₃, δ): 3.33(dt, 2H, J=7.11, 1.12Hz); 5.06(dq, 1H, J=1.43, 17.10Hz);
 5.18(dq, 1H, J=1.12, 10.22Hz); 5.44(ddt, 1H, J=7.11, 10.22, 17.10 Hz); 7.26-7.31(m, 1H);
 7.36-7.39(m, 2H); 7.61-7.64(m, 2H)
 - ¹³C NMR (100.5MHz; CDCl₃, δ): 60.38; 117.83; 124.71; 125.13; 129.06; 131.24; 145.13
- (8) Diphenyl sulfoxide: Isolated as white solid; mp 70 °C; v (KBr)/cm⁻¹ 1043;

¹H NMR(400MHz; CDCl₃, δ): 7.61-7.68(m, 4H), 7.42-7.53(m, 6H)

¹³C NMR (100.5MHz; CDCl₃, δ): 144.84, 129.78, 128.13, 123.72

Splitting patterns are designated as s (singlet), d (dublet), t (triplet), dt (double triplet), ddt (double-double triplet), q (quartet), dq (double quartet), m (multiplet).