Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Supporting Information**

## Superior Supercapacitive Performance of Grass-like CuO Thin Films

## **Deposited by Liquid Phase Deposition**

Shreelekha N. Khatavkar and Shrikrishna D. Sartale\*

Thin Films and Nanomaterials Laboratory, Department of Physics, SavitribaiPhule Pune University, Pune - 411007, India.

\*Corresponding author's email: sdsartale@physics.unipune.ac.in



**Figure S1.** Photo of as-deposited films on flat SS with varying boric acid  $(H_3BO_3)$  concentrations: (a) 0.05, (b) 0.1, (c) 0.5, (d) 1 and (e) 1.5 M.



Figure S2. Photos of light weight and flexible SS mesh, (a) before deposition, (b) after deposition and (c) same film annealed at 300 °C, for 1 h.



Figure S3. FE-SEM images of the bare SS mesh at four different magnifications.



Figure S4. Schematic and actual photo of the fabricated CuO symmetric device.



**Figure S5.** Raman spectrum of film annealed at 300 °C CuO on SS mesh. All the raman peaks are assigned to CuO phase.



Figure S6. FE-SEM images of the CuO on SS mesh at four different magnifications.



**Figure S7.** Energy dispersive spectroscopy (EDS) of a) as-deposited and b) annealed at 300 °C film.



**Figure S8.** Water contact angle measurement of the a) as-deposited and b) annealed at 300°C film on flat SS.

### **Estimation of specific capacitance from CV curves:**

From CV curves, specific capacitance (Cs) associated with the CuO electrode was calculated using the following relation

 $\mathbf{Cs} = \int \mathbf{I} \, \mathbf{dV} / (\mathbf{V} \times \mathbf{v} \times \mathbf{m}) \dots (S1)$ 

where,

Cs: specific capacitance (F  $g^{-1}$ ),

I: response current (mA),

V: potential window (V),

v: voltage scan rate (mV s<sup>-1</sup>),

m: mass of the active electrode material dipped in the electrolyte (g).

## > Estimation of specific capacitance from charge-discharge curves:

The specific capacitance, Cs of CuO electrode was calculated from the charge-discharge curves by the relation

 $Cs = (I \times td)/(V \times m) \dots (S2)$   $SE = 0.5 (Cs \times V^2) \dots (S3)$   $SP = SE/td \dots (S4)$ where,

Cs : specific capacitance (F  $g^{-1}$ ),

I : current (mA),

V : potential window (V),

td : discharging time (s),

m : mass of the active material dipped in the electrolyte (g),

SE : specific energy (Wh kg<sup>-1</sup>),

SP : specific power (kW kg<sup>-1</sup>),

### **Estimation of specific capacitance from EIS:**

The specific capacitance, Cs of CuO electrode was calculated from the EIS using the relations

$$C(\omega) = C'(\omega) + C''(\omega).....(S5)$$
  

$$C' = -Z'' / (\omega |\mathbf{Z}|^2 \times \mathbf{m}) .....(S6)$$
  

$$C'' = Z' / (\omega |\mathbf{Z}|^2 \times \mathbf{m}).....(S7)$$

where,

C( $\omega$ ) : total capacitance (F g<sup>-1</sup>), C' : real capacitance component (F g<sup>-1</sup>), C'' : imaginary capacitance component (F g<sup>-1</sup>), Z( $\omega$ )' : real impedance component ( $\Omega$ ), Z( $\omega$ )'' : imaginary impedance component ( $\Omega$ ), [Z] : modulus of Z = [(Z')<sup>2</sup> + (Z'')<sup>2</sup>]<sup>1/2</sup>, ( $\Omega$ )  $\omega$  : angular frequency(2 $\pi$  f), (Hz) f : frequency (Hz),

m : mass of the active material dipped in the electrolyte (g).

#### Estimation of Electrochemical active specific surface area from EIS:

The electrochemical active specific surface area of CuO electrode was calculated from the EIS using the relations

$$\mathbf{S}_{\mathbf{E}} = \mathbf{C}_{\mathbf{dm}} / \mathbf{C}_{\mathbf{d}} \dots (\mathbf{S8})$$

$$C_{dm} = 1/(2\pi m f Z_{Img}) \dots (S9)$$

where,

 $S_E$ : electrochemical active specific surface area (m<sup>2</sup> g<sup>-1</sup>),

- $C_{dm}$ : specific capacitance of the electrochemical double layer obtained from impedance spectroscopy at low frequency (F g<sup>-1</sup>),
- $C_d$ : capacitance of the electrochemical double layer with a constant value of 20  $\mu$ F cm<sup>-2</sup>,

m : mass of the active material dipped in the electrolyte (g),

- f: frequency in the low frequency range (0.01 Hz),
- $Z_{\text{Img}}$ : imaginary part of the impedance ( $\Omega$ ).



**Figure S10.** Specific capacitance against log f of the annealed films (CuO on flat SS) at 300, 400 and 500 °C.



**Figure S11.** FE-SEM of the CuO on SS mesh electrode after 1000 cycles of cyclic voltammetry with two different magnifications.

# Table: Supercapacitive performance of the CuO thin film electrode based on chargedischarge studies.

| Sr.<br>No. | Synthesis<br>method                                             | Substrate      | Morphology                                      | Electrolyte                         | Current<br>density             | Maximum<br>Specific<br>capacitance<br>(F g <sup>-1</sup> ) | Reference       |
|------------|-----------------------------------------------------------------|----------------|-------------------------------------------------|-------------------------------------|--------------------------------|------------------------------------------------------------|-----------------|
| 1          | LPD                                                             | SS             | CuO Bunch of<br>grass                           | 6 M KOH                             | 2 mA<br>cm <sup>-2</sup>       | 22                                                         | Present<br>work |
| 2          | Liquid solid reaction                                           | Copper<br>foil | CuO<br>microflowers                             | 6 M KOH                             | $5 \text{ mA} \text{ cm}^{-2}$ | 30                                                         | 1               |
| 3          | LPD                                                             | Mesh SS        | CuO -<br>nanograss                              | 6 M KOH                             | 2 mA<br>cm <sup>-2</sup>       | 59                                                         | Present<br>work |
| 4          | Potentio-dynamic deposition                                     | SS             | CuO<br>cauliflowers                             | 1 M Na <sub>2</sub> SO <sub>4</sub> | $2 \text{ mA} \text{ cm}^{-2}$ | 162                                                        | 2               |
| 5          | Anodization                                                     | Copper<br>foam | CuO<br>nanosheets                               | 6 M KOH                             | 0.4 mA<br>mg <sup>-1</sup>     | 212                                                        | 3               |
| 6          | Reactive sputtering                                             | SS             | Compact Cu <sub>2</sub> O                       | 6 M KOH                             | 1.5 Ag <sup>-1</sup>           | 220                                                        | 4               |
| 7          | Reactive sputtering                                             | SS             | Granular<br>porous CuO                          | 6 M KOH                             | 1.5 Ag <sup>-1</sup>           | 260                                                        | 4               |
| 8          | Liquid-solid reaction                                           | Copper<br>foil | Lotus like CuO                                  | 5 M NaOH                            | $2 \text{ mA} \text{ cm}^{-2}$ | 278                                                        | 5               |
| 9          | Chemical bathe deposition (CBD)                                 | SS             | CuO Nanobud<br>clusters                         | 1 M Na <sub>2</sub> SO <sub>4</sub> | 0.5 mA<br>cm <sup>-2</sup>     | 391                                                        | 6               |
| 10         | CBD                                                             | SS             | CuO Micro-<br>woolen                            | 1 M Na <sub>2</sub> SO <sub>4</sub> | 0.5 mA<br>cm <sup>-2</sup>     | 340                                                        | 7               |
| 11         | CBD                                                             | SS             | CuO/(OH) <sub>2</sub><br>nanobuds               | 1 M KOH                             | 1 mA<br>cm <sup>-2</sup>       | 340                                                        | 8               |
| 12         | CBD                                                             | SS             | CuO Micro-<br>woolen                            | 1 M Na <sub>2</sub> SO <sub>4</sub> | 1 mA<br>cm <sup>-2</sup>       | 400                                                        | 9               |
| 13         | Surfactant<br>mediated CBD                                      | SS             | CuO- flower<br>like                             | 1 M Na <sub>2</sub> SO <sub>4</sub> | 0.5 mA<br>cm <sup>-2</sup>     | 413                                                        | 10              |
| 14         | Successive ionic<br>layer adsorption<br>and reaction<br>(SILAR) | SS             | NanoFlowers-<br>like<br>CuO/Cu(OH) <sub>2</sub> | 2 M KOH                             | $1 \text{ mA} \text{cm}^{-2}$  | 457                                                        | 11              |
| 15         | Template free growth method                                     | Nickel<br>foam | CuO-nanosheet<br>arrays                         | 6 M KOH                             | 5 mA<br>cm <sup>-2</sup>       | 569                                                        | 12              |

| 16 | Liquid-solid<br>reaction | Copper<br>foil | Nanowire-like<br>Cu(OH) <sub>2</sub> arrays | 6 M KOH                                       | 2 mA<br>cm <sup>-2</sup>   | 750 | 1  |
|----|--------------------------|----------------|---------------------------------------------|-----------------------------------------------|----------------------------|-----|----|
| 17 | RF magnetron sputtering  | SS             | Nanograins                                  | Phosphate-<br>buffered<br>aqueous<br>solution | 0.5 mA<br>cm <sup>-2</sup> | 908 | 13 |
| 18 | In situ anodization      | Copper<br>foam | Graphene like<br>CuO nanofilms              | 3 М КОН                                       | 1 A g <sup>-1</sup>        | 919 | 14 |



**Figure S13.** A) The CV of the CuO symmetric device at constant scan rate 50 mVs<sup>-1</sup> in different potential ranges (0 to 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 V) and B) Enlarged view of the CV (0 to 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 V).

| Sr.<br>No. | Material and<br>Method of<br>preparation<br>of<br>symmetric<br>device | Substrate | Gel<br>Electrolyte/<br>Electrolyte  | Scan rate<br>/<br>Current<br>density | Maximum<br>Specific<br>capacitanc<br>e (F g <sup>-1</sup> ) | Energy<br>density and<br>Power density | Cyclic<br>stability<br>(%) | Reference |
|------------|-----------------------------------------------------------------------|-----------|-------------------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------|-----------|
| 1          | CuO                                                                   | SS        | CMC-Na <sub>2</sub> SO <sub>4</sub> | 5 mV                                 | ~ 9.5                                                       | ~ 35 Wh kg <sup>-1</sup>               | 90                         | 9         |
|            | CBD                                                                   |           |                                     | $s^{-1}$                             |                                                             | and                                    | (1000                      |           |
|            | (Binder-free)                                                         |           |                                     |                                      |                                                             | $\sim 800 \text{ KWkg}^{-1}$           | cycles)                    |           |
| 2          | CuO                                                                   | Mesh SS   | PVA-KOH                             | 5 mV                                 | 22                                                          | 0.6 Wh kg <sup>-1</sup>                | 80                         | Present   |
|            | LPD                                                                   |           |                                     | $s^{-1}$                             |                                                             | and                                    | (1000                      | work      |
|            | (Binder-free)                                                         |           |                                     |                                      |                                                             | 1339 W kg <sup>-1</sup>                | cycles)                    |           |
| 3          | CuO/RGO                                                               | Nickel    | 0.5M                                | 2 mV                                 | 64                                                          | 19 Wh kg <sup>-1</sup>                 | -                          | 15        |
|            | Hydrothermal                                                          | foam      | $K_2SO_4$                           | $s^{-1}$                             | and                                                         | and                                    |                            |           |
|            | (With Binder)                                                         |           |                                     | and                                  | 97                                                          | 72 Wkg <sup>-1</sup> .                 |                            |           |
|            |                                                                       |           |                                     | $0.2 \text{ Ag}^{-1}$                |                                                             | C C                                    |                            |           |

# S14: Table of comparison for CuO symmetric devices on two electrode system



**Figure S15.** A) Demonstration of the fabricated symmetric device- (a) charging and (b) discharging of CuO symmetric device and B) Discharging voltage versus time for CuO symmetric device.

#### References

- P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, G. Wang and D. Cao, *RSC Adv*, 2015, 5, 36656-36664.
- D. P. Dubal, G. S. Gund, C. D. Lokhande and R. Holze, *Mater Res Bull*, 2013, 48, 923-928.
- Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang and D. Cao, *Electrochim Acta*, 2012, 85, 393-398.
- S. M. Pawar, J. Kim, A. I. Inamdar, H. Woo, Y. Jo, B. S. Pawar, S. Cho, H. Kim and H. Im, *Scientific reports*, 2016, 6, 21310.
- Y.-K. Hsu, Y.-C. Chen and Y.-G. Lin, *Journal of Electroanalytical Chemistry*, 2012, 673, 43-47.
- 6. D. P. Dubal, G. S. Gund, R. Holze and C. D. Lokhande, *Journal of Electroanalytical Chemistry*, 2014, **712**, 40-46.
- D. P. Dubal, G. S. Gund, R. Holze and C. D. Lokhande, J Power Sources, 2013, 242, 687-698.
- U. M. Patil, M. S. Nam, S. C. Lee, S. Liu, S. Kang, B. H. Park and S. C. Jun, *J Alloy Compd*, 2017, 701, 1009-1018.
- A. V. Shinde, N. R. Chodankar, V. C. Lokhande, A. C. Lokhande, T. Ji, J. H. Kim and C. D. Lokhande, *Rsc Adv*, 2016, 6, 58839-58843.
- D. P. Dubal, G. S. Gund, R. Holze, H. S. Jadhav, C. D. Lokhande and C. J. Park, *Dalton Transactions*, 2013, 42, 6459-6467.
- 11. S. K. Shinde, D. P. Dubal, G. S. Ghodake, D. Y. Kim and V. J. Fulari, *Journal of Electroanalytical Chemistry*, 2014, **732**, 80-85.

- G. Wang, J. Huang, S. Chen, Y. Gao and D. Cao, *J Power Sources*, 2011, **196**, 5756-5760.
- B. Purusottam Reddy, K. Sivajee Ganesh and O. M. Hussain, *Applied Physics A*, 2016, 122.
- Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan, C. Tang, J.-K. Kim and Y. Luo, ACS Appl Mater Inter, 2015, 7, 9682-9690.
- K. K. Purushothaman, B. Saravanakumar, I. M. Babu, B. Sethuraman and G. Muralidharan, *RSC Adv*, 2014, 4, 23485.