Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

A new recipe for the rapid microwave synthesis of high quantum yield Mn²⁺-doped ZnGa₂O₄ phosphors for potential forensic applications

Samvit G. Menon*, Arup Kumar Kunti*, David E. Motaung, Hendrik C. Swart*

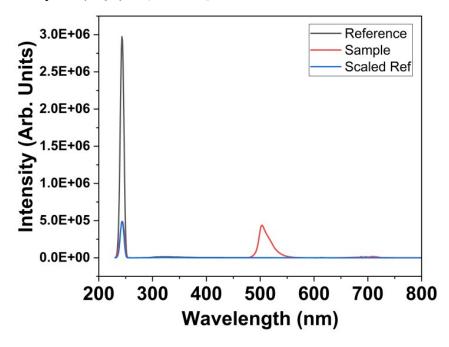
^a Department of Physics, University of the Free State, Bloemfontein 9301, Republic of South Africa

* Corresponding authors: samvit.menon@gmail.com; arupkunti@gmail.com; swarthc@ufs.ac.za

Calculations for internal and external quantum yields

Excitation wavelength, $\lambda_{ex} = 243 \text{ nm}$

Number of photons incident on the Spectralon® reference sample (I_{in} or E_R) = 2.48 x 10⁷


Number of photons incident on the sample (E_S) = 4.91 x 10⁶

Number of photons absorbed $(I_{ab}) = 1.98 \times 10^7$

Number of photons emitted (I_{em} or L_S) = 1.27 x 10⁷

Internal quantum yield (IQY) = $I_{em}/I_{ab} = L_s/(E_R - E_S) = 64\%$

External quantum yield (EQY) = $I_{em}/I_{in} = L_S/E_R = 47\%$

Fig. S1 Plots used in evaluating the quantum yields of the Mn²⁺-doped ZnGa₂O₄ sample annealed at 1200 °C for 2 h