Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Ti functionalized hierarchical-pore UiO-66(Zr/Ti) catalyst for the

transesterification of phenyl acetate and dimethyl carbonate

Bingying Jia,^{a,b} Miaojiang Wu,^{a,b} Hua Zhang,^a Yi Zeng,^a and Gongying Wang^{*,a}

^aChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;

^bNational Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China

Corresponding author: wanggongying1102@126.com

Scheme S1 ORTEP structure of the anion structure of Ti-Citrate with the atom-labeling

Fig. S1 The enlargement of the 2θ region from 5.5° to 10° in Fig. 1 (a)

Fig. S2 (a) N₂ adsorption-desorption isotherms at 77K and (b) mesopore size distribution of Ti functionalized H-UiO-66(Zr/Ti) prepared with different Ti source

Fig. S3 micropore size distribution of synthesized samples

Sample	octahedral coordinated Ti ^{IV} (%)	tetrahedral coordinated Ti ^{IV} (%)	
H-UiO-66(Zr)	-	-	
H-UiO-66(Zr/Ti)	72.5	27.5	
20%TiCp2Cl2-H-UiO-66(Zr/Ti)	36.6	63.4	
20%TiO(acac)2-H-UiO-66(Zr/Ti)	30.9	69.1	
20%Ti(OBu) ₄ -H-UiO-66(Zr/Ti)	18.8	81.2	
20%Ti-Citrate-H-UiO-66(Zr/Ti)	53.12	46.88	

Table S1 XPS data for the Ti^{IV} distribution in the samples

Table S2 XPS dat	a for the Ti ^{IV}	content in the	sample
------------------	----------------------------	----------------	--------

Sample	Ti	octahedral	tetrahedral	Zr	Surface octahedral
	(at%)	coordinated	coordinated Ti ^{IV}	(at%)	coordinated Ti/Zr
		Ti ^{IV} (at%)	(at%)		molar ratios
H-UiO-66(Zr)	-	-	-	6.47	-
H-UiO-66(Zr/Ti)	3.83	2.78	1.05	6.12	0.45
20%TiCp2Cl2-H-	6.42	2.35	4.07	5.13	0.46
UiO-66(Zr/Ti)					
20%TiO(acac) ₂ -H-	7.14	2.21	4.93	5.40	0.45
UiO-66(Zr/Ti)					
20%Ti(OBu)4-H-	14.47	2.72	11.75	5.44	0.50
UiO-66(Zr/Ti)					
20%Ti-Citrate-H-	4.93	2.62	2.31	4.66	0.56
UiO-66(Zr/Ti)					

Fig. S4 SEM images of (a) UiO-66(Zr), (b) H-UiO-66(Zr)

Fig. S5 TG curve of the synthesized samples

Fig. S6 Ti 2p XPS spectra of TS-1 and 20%TiO(acac)₂-TS-1

Fig. S7 (a) N₂ adsorption-desorption isotherms at 77K; (b) mesopore size distributions and (c) micropore size distribution of conventional UiO-66(Zr/Ti), H-UiO-66(Zr) precursor and TS-1 Table S3 XPS data for the Ti^{IV} content in TS-1 and 20%TiO(acac)₂-TS-1

Sample	Ti	octahedral	tetrahedral	Si	Surface Ti/Si
	(at%)	coordinated	coordinated	(at%)	molar ratios
		Ti ^{IV} (at%)	Ti ^{IV} (at%)		
TS-1	0.84	0	1.14	28.84	0.029
20%TiO(acac)2-	2.52	0	2.52	27.93	0.09
TS-1					

Fig S8 The enlargement of the 2 θ region from 6° to 10.5° in Fig. 7 (a)