Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## Supporting Information

Triple-shelled  $CuO/CeO_2$  hollow nanospheres derived from metal-organic frameworks as highly efficient catalysts for CO oxidation

Xue-Zhi Song, Qiao-Feng Su, Shao-Jie Li, Si-Hang Liu, Nan Zhang, Yu-Lan Meng, Xi Chen and Zhenquan Tan\*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, Liaoning, P. R. China

\*tanzq@dlut.edu.cn

Text S1: The detailed H<sub>2</sub>-TPR+N<sub>2</sub>O experiments and TOF calculation

 $H_2$  temperature-programmed reduction ( $H_2$ -TPR) and  $N_2O$  chemisorption experiments were performed on a PCA-140 instrument. Prior to reduction, the catalyst (200 mg) was pretreated in an Ar flow (30 mL/min) from room temperature to 500 °C at a rate of 20 °C/min, and the temperature was then maintained at 500 °C for 1 h. The  $H_2$ -TPR+ $N_2O$  chemisorption process consists of three sequential steps:

$$CuO + H_2 \rightarrow Cu + H_2O$$
 (1)

$$2Cu + N_2 O \rightarrow Cu_2 O + N_2 \tag{2}$$

$$Cu_2O + H_2 \rightarrow 2Cu + H_2O \tag{3}$$

Step 1 represents the reduction of CuO in the catalysts. A flow of 5% H<sub>2</sub>/N<sub>2</sub> (30 mL/min) was used as the reducing agent, and the temperature was increased from room temperature to 300 °C at a heating rate of 5 °C/min. The amount of H<sub>2</sub> consumption ( $A_1$ ) corresponds to the total amount of CuO in the catalysts. Step 2 represents the oxidation of surface Cu to Cu<sub>2</sub>O by N<sub>2</sub>O, which is a typical method for evaluating the dispersion and crystallite size of Cu catalysts. This step was initiated after the reduced catalyst, which was cooled to 60 °C in flowing Ar (30 mL/min) for 30 min; the catalysts were then oxidized at 60 °C for 1 h in pure N<sub>2</sub>O flowing at 30 mL/min) at room temperature for 1 h. Step 3 represents the reduction of Cu<sub>2</sub>O surface species. The catalysts were reduced under a 5% H<sub>2</sub>/N<sub>2</sub> atmosphere (30 mL/min) from room temperature to 300 °C with a heating rate of 5 °C/min. The amount of H<sub>2</sub> consumed ( $A_2$ ) corresponds to twice the amount of surface Cu in the catalyst. The dispersion (D) of CuO was calculated as follows:<sup>Ref. S1</sup>

$$D_{CuO} = 2A_2/A_1 \times 100\%$$
 (4)

Concerning the intrinsic activity, turnover frequencies (TOFs) were calculated on the basis of the following definitions:

$$TOF \mathbb{Z}^{-1} \mathbb{Z} = X_{CO} F_{CO} \frac{5M_{Cu}}{4m_{cal} X_{CuO} D_{CuO}}$$
(5)

Where  $X_{CO}$  is the CO conversion at a given temperature,  $F_{CO}$  is the flow rate of CO in

mol/s,  $m_{cat}$  is the amount of catalyst,  $X_{CuO}$  is the CuO loading in the catalyst,  $D_{CuO}$  is the dispersion of CuO and  $M_{Cu}$  is the molar mass of Cu (63.546 g/mol). *TOF* reflects the conventional calculation of *TOF* based on the metal dispersion.

(Ref. S1) R. Kang, X. Wei, F. Bin, Z. Wang, Q. Hao and B. Dou, Reaction mechanism and kinetics of CO oxidation over a  $CuO/Ce_{0.75}Zr_{0.25}O_{2-\delta}$  catalyst. *Appl. Catal. A Gen.*, 2018, **565**, 46-58.



**Fig. S1** SEM image, TEM image and corresponding elemental mapping images of solid Ce-BPDC microspheres precursors.



**Fig. S2** SEM images of CuO/CeO<sub>2</sub>-4% (a), CuO/CeO<sub>2</sub>-12% (b) and CuO/CeO<sub>2</sub>-16% (c).



Fig. S3  $N_2$ -adsorption-desorption isotherms (a) and corresponding pore size distributions curves (b) of the CeO<sub>2</sub> support and CuO/CeO<sub>2</sub>-X% samples.



Fig. S4 The regional magnification of XRD patterns of the support  $CeO_2$  and  $CuO/CeO_2$ -X% samples.



**Fig. S5** XPS spectra of Ce 3d (a) and Cu 2p (b) of the CuO/CeO<sub>2</sub>-8% before and after catalysis.



**Fig. S6** Auger lines of Cu LMM in the CuO/CeO<sub>2</sub>-8% sample before and after catalysis.



Fig. S7 CO conversion at 110 °C for the bare CeO<sub>2</sub> and CuO/CeO<sub>2</sub>-X% samples.



Fig. S8 SEM image of CuO/CeO<sub>2</sub>-8% after catalysis.

| samples                   | Cu (wt%) |
|---------------------------|----------|
| CuO/CeO <sub>2</sub> -4%  | 4.11     |
| CuO/CeO <sub>2</sub> -8%  | 7.97     |
| CuO/CeO <sub>2</sub> -12% | 11.44    |
| CuO/CeO <sub>2</sub> -16% | 12.73    |
|                           |          |

 Table S1 ICP analytical results of CuO/CeO2-X% samples.

Table S2 Textural (BET) characteristics of bare CeO<sub>2</sub> and CuO/CeO<sub>2</sub>-X% samples.

| sample                    | BET Surface              | Pore Volume $(cm^{3}/a)$         | Average Pore | Pore Size    |
|---------------------------|--------------------------|----------------------------------|--------------|--------------|
|                           | Area (m <sup>2</sup> /g) | Fore volume (cm <sup>2</sup> /g) | Size (nm)    | distribution |
| CeO <sub>2</sub>          | 57.03                    | 0.12                             | 6.6          | 2-4 nm       |
| CuO/CeO <sub>2</sub> -4%  | 32.36                    | 0.14                             | 10.3         | 2-4 nm       |
| CuO/CeO <sub>2</sub> -8%  | 24.89                    | 0.09                             | 8.9          | 2-4 nm       |
| CuO/CeO <sub>2</sub> -12% | 22.66                    | 0.07                             | 7.1          | 2-4 nm       |
| CuO/CeO <sub>2</sub> -16% | 21.05                    | 0.07                             | 7.4          | 2-4 nm       |

**Table S3** Relative contents of  $Cu^+$  and  $Ce^{3+}$  of  $CuO/CeO_2$ -8% sample before and after catalysis analyzed by XPS

|                                   | $C_{11}^{+}(0/)$    | Ce <sup>3+</sup> /(Ce <sup>3+</sup> +Ce <sup>4+</sup> ) |  |
|-----------------------------------|---------------------|---------------------------------------------------------|--|
| catalysis                         | Cu <sup>+</sup> (%) | (%)                                                     |  |
| CuO/CeO <sub>2</sub> -8% (before) | 30.25               | 21.07                                                   |  |
| CuO/CeO <sub>2</sub> -8% (after)  | 25.30               | 17.31                                                   |  |

| Table | <b>S4</b>        | Dispersion  | and | content | of | CuO, | CO | conversion | and | TOF | values | for |
|-------|------------------|-------------|-----|---------|----|------|----|------------|-----|-----|--------|-----|
| CuO/C | CeO <sub>2</sub> | -X% catalys | ts. |         |    |      |    |            |     |     |        |     |

| Catalysts                 | $D_{\mathrm{CuO}^{\mathrm{a}}}(\%)$ | Cu <sup>b</sup> (wt %) | CuO (wt %) | CO Conversion <sup>c</sup> (%) | TOF (s <sup>-1</sup> ) <sup>d</sup> |
|---------------------------|-------------------------------------|------------------------|------------|--------------------------------|-------------------------------------|
| CuO/CeO <sub>2</sub> -4%  | 63.42                               | 4.11                   | 4.89       | 8.28                           | $1.58 \times 10^{-3}$               |
| CuO/CeO <sub>2</sub> -8%  | 43.33                               | 7.97                   | 9.06       | 11.42                          | $1.72 \times 10^{-3}$               |
| CuO/CeO <sub>2</sub> -12% | 51.31                               | 11.44                  | 12.51      | 9.44                           | $8.68 \times 10^{-4}$               |
| CuO/CeO <sub>2</sub> -16% | 76.34                               | 12.73                  | 13.73      | 1.38                           | 7.77 × 10 <sup>-5</sup>             |

<sup>a</sup>CuO dispersion ( $D_{CuO}$ ) was determined by H<sub>2</sub>-TPR + N<sub>2</sub>O chemisorption;<sup>Ref. S1</sup>

<sup>b</sup>Cu concentration determined by ICP-OES;

<sup>c</sup>Reaction temperature is 90 <sup>o</sup>C;

<sup>d</sup>TOF represents the turnover frequency calculated by equation (5).

**Table S5** Surface elemental composition of bare  $CeO_2$  and  $CuO/CeO_2$ -X%determined by XPS.

| ootolysta —               | Su    | /0)   |       |
|---------------------------|-------|-------|-------|
| Catalysis                 | Cu 2p | Ce 3d | O 1s  |
| CeO <sub>2</sub>          | -     | 25.85 | 74.15 |
| CuO/CeO <sub>2</sub> -4%  | 8.93  | 16.50 | 74.57 |
| CuO/CeO <sub>2</sub> -8%  | 10.25 | 17.80 | 71.95 |
| CuO/CeO <sub>2</sub> -12% | 11.16 | 17.28 | 71.56 |
| CuO/CeO <sub>2</sub> -16% | 12.06 | 18.28 | 69.66 |

|                              | N 11                  | Temperature    |                                                                         | D.C.              |
|------------------------------|-----------------------|----------------|-------------------------------------------------------------------------|-------------------|
| Catalysts                    | Morphology            | (°C) with 100% | Reaction condition                                                      | Keterences        |
|                              |                       | CO Conversion  |                                                                         |                   |
| CuO/CeO <sub>2</sub> -8%     | triple-shelled hollow | 130            | 1%CO/21%O <sub>2</sub> /78%N <sub>2</sub> ,                             | This work         |
|                              | nanospheres           |                | $60000 \text{ mL} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ |                   |
| AuPd/CeO <sub>2</sub>        | multi-shelled hollow  | 145            | 1%CO/21%O <sub>2</sub> /78%N <sub>2</sub> ,                             | Dalton Trans.,    |
|                              | spheres               |                | $30000 \text{ mL} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ | 2017, 46, 1634-   |
|                              |                       |                |                                                                         | 1644              |
| Au@CeO <sub>2</sub>          | core-shell            | 155            | 1%CO/1.6%O <sub>2</sub> /97.4%He,                                       | Energy Environ.   |
|                              | submicrospheres       |                | $15000 \text{ mL} \cdot g_{cat}^{-1} \cdot h^{-1}$                      | Sci., 2012, 5,    |
|                              |                       |                |                                                                         | 8937-8941         |
| 20CuCe-L                     | Litchi-peel-like      | 120            | 1%CO/10%O <sub>2</sub> /89%Ar,                                          | Nanoscale,        |
| (copper-ceria)               | hierarchical hollow   |                | $60000 \text{ mL} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ | 2018,10, 22775-   |
|                              | microspheres          |                |                                                                         | 22786             |
| 1CuCe-NR                     | nanorod               | 122            | 1%CO/20%O <sub>2</sub> /79%N <sub>2</sub> ,                             | ACS Catal., 2017, |
| (copper oxide                |                       |                | 80000 mL $g_{cat}^{-1}$ h <sup>-1</sup>                                 | 7, 1313-1329      |
| deposited on ceria)          |                       |                |                                                                         |                   |
| CuO@CeO <sub>2</sub> -50%    |                       | 125            | 1%CO balanced in dry                                                    | J. Mater. Chem.   |
|                              |                       |                | air, 20000 mL·g <sub>cat</sub> -1. h-1                                  | A, 2017, 5,       |
|                              |                       |                |                                                                         | 13565-13572       |
| CuO@CeO2-0.05                | spiny yolk@shell      | 120            | 1%CO/20%O <sub>2</sub> /79%N <sub>2</sub> ,                             | Adv. Funct.       |
|                              | cubes                 |                | $60000 \text{ mL} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ | Mater., 2018,     |
|                              |                       |                |                                                                         | 1802559           |
| Au/CeO <sub>2</sub> @UiO-66  | core-shell            | 100            | 1%CO/21%O <sub>2</sub> /78%N <sub>2</sub> ,                             | J. Mater. Chem.   |
|                              | microspherical beads  |                | 120000 mL· g <sub>cat</sub> -1·h-1                                      | A, 2017, 5,       |
|                              |                       |                |                                                                         | 13966-13970       |
| 300 °C-CeO <sub>2</sub> -CuO | porous/hollow rod     | 98             | 1%CO/10%O <sub>2</sub> /89%N <sub>2</sub> ,                             | ACS Appl. Mater.  |
|                              |                       |                | $60000 \text{ mL} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ | Interfaces, 2017, |
|                              |                       |                |                                                                         | 9, 39594-39601    |

 Table S6 Comparison of the activity for CO oxidation over different ceria-based catalysts.