Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary information

A novel 3D Cd-based luminescent coordination polymer for selective sensing of 4-NP and NZF

Jie Zhang, ^a Lingling Gao, ^a Yang Wang, ^a Lijun, Zhai, ^a Xiaoyan Niu, ^a and Tuoping Hu^{*a}

Table S1. Crystallogra	phic data for 1 .
Complex	1
Empirical formula	$C_{140}H_{112}Cd_7N_{847}$
Formula weight Crystal system Space group	3445.25 triclinic <i>P-1</i>
<i>a</i> [Å]	10.8154(6)
<i>b</i> [Å]	17.0791(11)
<i>c</i> [Å]	17.5910(10)
α [°]	82.238(3)
β [°]	84.722(3)
γ [°]	87.293(3)
<i>V</i> [Å ³]	3203.9(3)
Ζ	1
$Dc / (g \cdot cm^{-3})$	1.786
F(000)	1720.0
μ (Mo K $lpha$) / mm ⁻¹	1.237
Reflections collected	48426
θ range for data collection / (°)	2.779-25.436
Independent reflections (R_{int})	11761 (0.1070)
Data / restraints / parameters	11761/100/945
Gof	1.017
$R_1, wR_2 [I > 2\sigma(I)]^{ab}$	0.0598, 0.1234
R_1 , wR_2 (all data) ^{<i>a</i>}	0.1246, 0.1530
Largest diff. Peak and hole[$e \cdot Å^{-3}$]	1.89 and -2.75
CCDC number	1886813

Table. S2 Selected bond lengths/Å and bond angles/°for complex (1).

		Complex	: 1		
Cd1-O1	2.281(5)	Cd2-O2	2.331(6)	Cd1-O21 ^B	2.327(15)
Cd1-O2	2.274(8)	Cd2-O11	2.238(5)	Cd1-O21A ^B	2.347(18)
Cd1-O3 ^A	2.328(6)	Cd2-O18	2.295(8)	Cd3-O16 ^E	2.448(5)
Cd1-O10 ^B	2.271(5)	Cd2-O19	2.277(8)	Cd3-N4 ^D	2.212(7)
Cd2-O21 ^C	2.364(16)	Cd3-O7	2.364(6)	Cd3-O6	2.640(5)
Cd4-O1 ^F	2.279(5)	Cd4-O12 ^F	2.225(6)	Cd2-O23 ^C	2.701(16)
Cd4-O9 ^B	2.381(5)	Cd2-O21A ^C	2.57(2)	Cd3-O15 ^E	2.407(5)
Cd4-O9 ^G	2.381(5)	Cd4-O12	2.225(6)	Cd3-O6 ^D	2.388(5)
Cd4-O1	2.279(5)	Cd2-O1	2.227(6)		
Cd2-Cd1-Cd4	64.156(16)	O10 ^B -Cd1-O21A ^B	102.3(5)	O7-Cd3-O6 ^D	126.94(18)

O1-Cd1-Cd2	39.17(15)	O20-Cd1-Cd2	142.26(19)	O7-Cd3-O6	50.72(17)
O1-Cd1-Cd4	1-Cd1-Cd4 31.74(13) O2		80.09(19)	O7-Cd3-O15 ^E	141.76(18)
O1-Cd1-O3 ^A	O1-Cd1-O3 ^A 74.7(2)		103.2(2)	O7-Cd3-O16 ^E	88.89(18)
O1-Cd1-O21 ^B	157.7(4)	O20-Cd1-O2	171.5(3)	O15 ^E -Cd3-O6	166.03(17)
O1-Cd1-O21A ^B	166.2(5)	O20-Cd1-O3 ^A	83.1(3)	O15 ^E -Cd3-O16 ^E	54.03(18)
O2-Cd1-Cd2	41.78(15)	O20-Cd1-O21 ^B	94.0(4)	O11-Cd2-O18	82.2(2)
O2-Cd2-Cd1	40.53(19)	O2-Cd2-O21A ^C	82.0(4)	N1-Cd3-O6 ^D	84.4(2)
O2-Cd2-O21 ^C	78.3(4)	O11-Cd2-Cd1	91.76(15)	C54 ^E -Cd3-C13	141.1(2)
O2-Cd2-O23 ^C	117.6(3)	O11-Cd2-O2	88.5(2)	Cd1-Cd4-Cd1 ^F	180.0
N1-Cd3-O6	83.5(2)	O20-Cd1-O21A ^B	81.9(5)	O1F-Cd4-Cd1F	31.78(12)
N1-Cd3-O7	88.5(3)	O21 ^B -Cd1-Cd2	123.0(3)	O1-Cd4-Cd1 ^F	148.22(12)
N1-Cd3-O15 ^E	90.0(2)	O21 ^B -Cd1-Cd4	170.4(3)	O1 ^F -Cd4-Cd1	148.22(12)
N4 ^D -Cd3-O7 95.4(3)		O21 ^B -Cd1-O3 ^A	93.6(4)	O1-Cd4-Cd1	31.78(12)
N4 ^D -Cd3-O15 ^E	92.0(2)	O21 ^B -Cd1-O21A ^B	12.2(6)	O1-Cd4-O1 ^F	180.0
N4 ^D -Cd3-O16 ^E	87.0(2)	O21A ^B -Cd1-Cd2	135.2(4)	O1 ^F -Cd4-O9 ^B	90.87(19)
N4 ^D -Cd3-N1	171.0(2)	O21A ^B -Cd1-Cd4	159.9(4)	O1-Cd4-O9 ^G	90.87(19)
Cd1-Cd4-Cd16	180.0	O1-Cd2-Cd1	40.31(13)	O1-Cd4-O9 ^B	89.13(19)
N4 ^D -Cd3-O6	92.6(2)	O1-Cd2-O2	80.7(2)	O1 ^F -Cd4-O9 ^G	89.13(19)
$N4^{D}$ -Cd3-C54 ^E	88.6(2)	O1-Cd2-O11	90.1(2)	N1-Cd3-O16 ^E	101.2(2)
O2-Cd1-O3 ^A	105.2(3)	O1-Cd2-O18	167.5(3)	N4 ^D -Cd3-O6 ^D	86.7(2)
O2-Cd1-O21 ^B	84.2(4)	O1-Cd2-O19	94.3(2)	O1 ^F -Cd4-Cd1 ^F	31.78(12)
O2-Cd1-O21A ^B	96.0(5)	O1-Cd2-O21 ^C	102.1(4)	O1-Cd4-Cd1 ^F	148.22(12)
O3 ^A -Cd1-Cd2	87.02(19)	O1-Cd2-O23 ^C	89.5(4)	O1 ^F -Cd4-Cd1	148.22(12)
O3 ^A -Cd1-Cd4	93.16(16)	O1-Cd2-O21A ^C	112.5(4)	O1-Cd4-Cd1	31.78(12)
O3 ^A -Cd1-O21A ^B	93.4(5)	O12F-Cd4-Cd1F	94.90(15)	O1-Cd4-O1 ^F	180.0
O10 ^B -Cd1-Cd2	93.02(15)	O12 ^F -Cd4-O1	85.9(2)	O1 ^F -Cd4-O9 ^B	90.87(19)
O10 ^B -Cd1-Cd4	66.81(16)	O12-Cd4-O1	94.1(2)	O1-Cd4-O9 ⁷	90.87(19)
O10 ^B -Cd1-O1	91.09(19)	O12 ^F -Cd4-O1 ^F	94.1(2)	O1-Cd4-O9 ^B	89.13(19)
O10 ^B -Cd1-O2	89.4(2)	O12-Cd4-O1 ^F	85.9(2)	O1 ^F -Cd4-O9 ^G	89.13(19)
O10 ^B -Cd1-O3 ^A	157.4(3)	O12 ^F -Cd4-O9 ^G	92.1(2)	O9 ^B -Cd4-Cd1 ^F	122.65(15)
O10 ^B -Cd1-O20	83.1(3)	O12-Cd4-Cd1	94.90(15)	O9 ^G -Cd4-Cd1	122.65(15)
O10 ^B -Cd1-O21 ^B	105.2(4)	O12-Cd4-Cd1 ^F	85.10(15)	O9 ^G -Cd4-Cd1 ^F	57.35(15)
O12 ^F -Cd4-O12	180.0	O12-Cd4-O9 ^G	87.9(2)	O9 ^B -Cd4-Cd1	57.35(15)
Cd2-O1-Cd1	100.5(2)	O12 ^F -Cd4-O9 ^B	87.9(2)	O9 ^B -Cd4-O9 ^G	180.0
Cd2-O1-Cd4	120.7(2)	O12-Cd4-O9 ^B	92.1(2)	O12-Cd4-Cd1	94.90(15)
Cd4-O1-Cd1	116.5(2)	O12 ^F -Cd4-O12	180.0	O12-Cd4-Cd1 ^F	85.10(15)
Cd1-O2-Cd2	97.7(3)	Cd2-O1-Cd1	100.5(2)	O12F-Cd4-Cd1	85.10(15)
Cd3 ^D -O6-Cd3	103.78(18)	Cd2-O1-Cd4	120.7(2)	O12 ^F -Cd4-Cd1 ^F	94.90(15)
O9 ^B -Cd4-Cd1 ^F	122.65(15)	Cd4-O1-Cd1	116.5(2)	O12 ^F -Cd4-O1	85.9(2)
O9 ^G -Cd4-Cd1	122.65(15)	O12 ^F -Cd4-Cd1	85.10(15)	O12-Cd4-O1	94.1(2)
O9 ^G -Cd4-Cd1 ^F	57.35(15)	N4 ^D -Cd3-O15 ^E	92.0(2)	O12 ^F -Cd4-O1 ^F	94.1(2)
O9 ^B -Cd4-Cd1	57.35(15)	N4 ^D -Cd3-O16 ^E	87.0(2)	O12-Cd4-O1 ^F	85.9(2)
O9 ^B -Cd4-O9 ^G	180.0	N4 ^D -Cd3-N1	171.0(2)	O12 ^F -Cd4-O9 ^G	92.1(2)
N4 ^D -Cd3-O6	92.6(2)	O12-Cd4-O9 ^B	92.1(2)	O12-Cd4-O9 ^G	87.9(2)

N4 ^D -Cd3-O7	95.4(3)	N4 ^D -Cd3-C13	97.0(3)	O12 ^F -Cd4-O9 ^B	87.9(2)
Cd1-O2-Cd2	97.7(3)				

 $\mathsf{A}_{\mathsf{-}X,\mathsf{-}Y,\mathsf{2}-\mathsf{Z}'_{\mathsf{2}}}\mathsf{B}_{1\mathsf{-}X,1\mathsf{-}Y,\mathsf{2}-\mathsf{Z}'_{\mathsf{2}}}\mathsf{C}_{\mathsf{-}1\mathsf{+}X,\mathsf{-}1\mathsf{+}Y,\mathsf{+}\mathsf{Z}'_{\mathsf{2}}}\mathsf{D}_{1\mathsf{-}X,\mathsf{2}-\mathsf{Y},1\mathsf{-}\mathsf{Z}'_{\mathsf{2}}}\mathsf{E}_{\mathsf{-}1\mathsf{+}X,1\mathsf{+}Y,\mathsf{+}\mathsf{Z}'_{\mathsf{2}}}\mathsf{F}_{1\mathsf{-}X,\mathsf{-}Y,\mathsf{2}-\mathsf{Z}'_{\mathsf{2}}}\mathsf{G}_{\mathsf{+}X,\mathsf{-}1\mathsf{+}Y,\mathsf{+}\mathsf{Z}'_{\mathsf{2}}}\mathsf{H}_{\mathsf{+}X,1\mathsf{+}Y,\mathsf{+}\mathsf{Z}'_{\mathsf{2}}}\mathsf{H}_{\mathsf{+}X,\mathsf{1}+Y,\mathsf{+}\mathsf{Z}'_{\mathsf{2}}}\mathsf{F}_{\mathsf{-}1\mathsf{+}X,\mathsf{2}+Y,\mathsf{2}+Y,\mathsf{2}}\mathsf{F}_{\mathsf{-}1\mathsf{+}X,\mathsf{2}+Y,\mathsf{2$

Figure S1. The 1D {Cd₅(COO)₈(u_3 -H₂O)₂}_n SBUs for 1.

Figure S2. The binuclear paddle-wheel $\{Cd_2(COO)_4\}_n$ SBU for 1.

Figure S3. PXRD patterns of the series complexes. Black: Simulated from the X-ray singlecrystal data; Red: observed for the as-synthesized solids.

Figure S4. The TG curve of complex 1.

Figure S5. PXRD patterns of 1 after being immersing in water solution for various conditions.

Figure S6. PXRD patterns of 1 after being immersing in water solution for various conditions.

Figure S7. The K_{SV} plot for the fluorescence quenching of 4-NP, m-NP, o-NP, 4-NA, m-NA, o-NA, 4-NT, o-NT and NB to aqueous@1 suspensions.

Figure S8. The K_{SV} plot for the fluorescence quenching of 4-NP (a), m-NP(b), o-NP(c), 4-NA(d), m-NA(e), o-NA(f), 4-NT(g), o-NT(h) and NB(i) to aqueous@1 suspensions at low concentration.

Figure S9. Comparison of the luminescence intensity of **1** in DMF suspension with the introduction of other antibiotic.

Figure S10. the selective detection of 4-NP/NZF (f) on LCP 1 in the presence of various analyte in water system.

Figure S11. The results of 1 for three continuous cycles.

Figure S12. The PXRD patterns of 1 for the simulated, as-synthesized and after immerging in NACs and antibiotic.

Figure S13. The IR patterns of 1 for the, as-synthesized and after immerging in 4-NP and NZF.

Figure S14. The UV spectra of NACs and antibiotic.

Table S3. Summary of LCPs for detecting 4-NP and NZF.

Molecular Formula	analata	Quenching Constant	detection limit	Daf
	anaryte	(Ksv/M ⁻¹)	(DL)	Kel.
$\{[Cd_2(obtz)(Meip)_2] \cdot H_2O\}_n$	4-NP	0.113×10 ³	NA	24
$\{[Cd(obtz)(ndc)] \cdot 0.5H_2O\}_n$	4-NP	0.117×10 ³	NA	24
{[Eu ₂ (TDC) ₃ (CH ₃ OH) ₂]·CH ₃ OH} _n	NZF	1.6×10 ⁴	NA	25