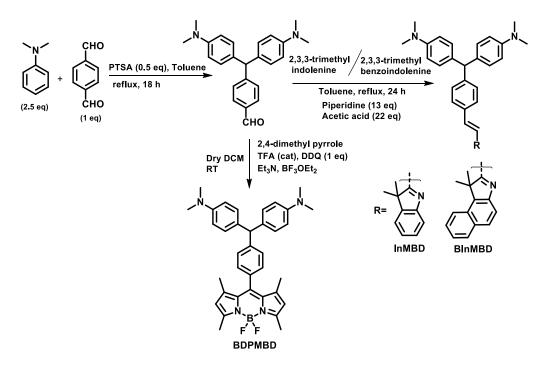
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019


Supporting information

Multifunctional fluorescent leucomalachite green derivatives for chemodosimetric detection of Fe³⁺, specific imaging of lipid droplets and intracellular pH monitoring

Thekke Thattariyil Divya^a, Darpan Raghav^b, Krishnan Rathinasamy^{b*}, Lakshmi Chakkumkumarath^{a*}

- a. Department of Chemistry, National Institute of Technology Calicut, Kerala, India-673601
- b. School of Biotechnology, National Institute of Technology Calicut, Kerala, India-673601

Corresponding Author: lakshmic@nitc.ac.in

Scheme S1. Synthesis of leucomalachite green derivatives.

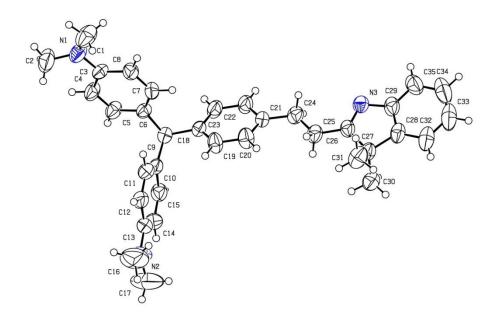


Fig. S1 ORTEP diagram of InMBD.

Identification code	InMBD			
Empirical formula	C ₃₅ H ₃₇ N ₃			
Formula weight	499.67			
Temperature	296(2) K			
Wavelength	0.71073 A			
Crystal system, space group	Monoclinic, P21/n			
	a = 13.777(3) A alpha = 90 deg			
Unit cell dimensions	b = 10.069(2) A beta = 91.861(12)deg			
	c = 20.859(4) A gamma = 90 deg.			
Volume	2892.2(11) A ³			
Z, Calculated density	4, 1.148 Mg/m ³ 0.067 mm ⁻¹			
Absorption coefficient				
F(000)	1072			
Crystal size	0.350 x 0.350 x 0.300 mm			
Theta range for data collection	1.479 to 28.507 deg.			
Limiting indices	-18<=h<=18, -13<=k<=9, -27<=l<=27			
Reflections collected / unique	23022 / 7049 [R(int) = 0.0936]			
Completeness to theta = 28.09	100.0 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. Transmission	0.980 and 0.977			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	7049 / 0 / 349			
Goodness-of-fit on F ²	0.903			
Final R indices [I>2sigma(I)]	R1 = 0.0677, wR2 = 0.1635			
R indices (all data)	R1 = 0.2335, wR2 = 0.2625			
Largest diff. peak and hole	0.242 and -0.234 e.A ⁻³			

Detection of Fe³⁺

The probe as well as Fe^{3+} stock solutions (0.01 M) were prepared in ethanol. 0-50 μ M of Fe^{3+} was added to fixed concentration of the probes in 3 mL cuvette and stirred for 2 min. The change in absorbance at 630 nm were recorded for each of these solutions. The calibration plots were drawn by plotting the change in absorbance as a function of concentration. Emission intensity at 501 nm, 433 nm and 455 nm respectively were used for **BDPMBD**, **InMBD** and **BInMBD**. The change in emission

intensity as a function of concentration were used for drawing calibration plot. The concentrations of the probes used for the study is given below.

Colorimetric study: **BDPMBD** (10⁻⁵ M), **InMBD** (2×10^{-5} M), **BInMBD** (2×10^{-5} M) Emission study: **BDPMBD** (10^{-6} M), **InMBD** (5×10^{-5} M), **BInMBD** (5×10^{-5} M)

Details of cyclic voltammetry experiments

The electrochemical studies of the compounds were performed in acetonitrile containing 0.1M tetrabutylammonium hexafluorophosphate as the supporting electrolyte at a scan rate of 100 mVs⁻¹ under nitrogen atmosphere. The concentrations of the samples were maintained as 10^{-3} M. The electrodes used in the study were platinum (working), platinum wire (auxiliary) and Ag/AgCl (aq) (standard) electrodes.

Cell Imaging studies

Minimal essential medium (MEM), cell culture tested antibiotic and antimycotic solution, phosphatebuffered saline (PBS), tryptone, yeast extract, peptone, glucose, ammonium sulphate, dimethyl sulfoxide (DMSO), sodium chloride, and glycerol were obtained from HiMedia, Mumbai, India. Formaldehyde solution 37% was procured from MilliporeSigma (Burlington, Massachusetts, United States). Oleic acid and Hoechst 33342 was obtained from Sigma-Aldrich. Fetal Bovine Serum (FBS) was obtained from Invitrogen, CA, USA. Fluorescence microscopic images were taken using Nikon (Tokyo, Japan) ECLIPSE Ti-E inverted fluorescence microscope using Cool SNAP digital camera and processed using Image J (NIH, Bethesda). In cell imaging, the sections were examined with Leica, TCS SP8 confocal microscope.

Organisms used in the biological study and growth conditions

Human cervical cancer cells (HeLa) were obtained from National Centre for Cell Science (NCCS), Pune, India. HeLa cells were grown in MEM supplemented with 10% (v/v) FBS, sodium bicarbonate and 1% antibiotic-antimycotic solution containing 100 units of penicillin, 100 μ g of streptomycin, and 0.25 μ g of amphotericin B per mL. Cells were maintained in 25 cm² tissue culture flasks at 37 °C in a humidified atmosphere of 5% CO₂ and 95% air.

Laboratory strain of Baker's yeast *Saccharomyces cerevisiae* was grown in aerobic conditions in a defined YPD medium supplemented with 1% yeast extract, 2% peptone, and 2% glucose. To enhance the lipid production profile inside the yeast cells, the cells were separately grown in a modified medium containing 2% peptone, ammonium sulfate (3 g/L) as the sole nitrogen source, oleic acid (50 μ M) and glycerol (100 g/L) as a sole carbon source. *Escherichia coli* (EC) (BL21 (DE3)) and *Bacillus subtilis* 168 (BS) were grown in aerobic conditions in a liquid medium supplemented with yeast extract (0.5%), tryptone (1.5%), and NaCl (1%)

Localization studies of the compounds in HeLa cells using fluorescence microscopy

To study the localization of compounds **InMBD**, **BInMBD**, and **BDPMBD**, HeLa cells at a density of 0.5×10^5 cells/mL were seeded on poly-L-lysine coated glass cover slips in 24-well tissue culture plates. Next day, the cells were incubated with each of these compounds (50 µM) separately for 24 h. The cells were then washed twice with 1xPBS to remove the excess un-internalized compounds. Further, the cells were fixed with 3.7% formaldehyde and were subsequently stained with nuclear stain Hoechst 33342 (1.5 µg/mL). [The localization in live HeLa cells was studied by incubating the HeLa cells with compounds **BDPMBD** (100 µM), **BInMBD** (100 µM), and **InMBD** (100 µM).] The cover slips containing fixed & live cells were mounted on clean glass slides and the cells were observed using an inverted fluorescence microscope.

Confocal imaging in live HeLa and DLD cells

The localization of the compounds in the live HeLa cells and DLD cells $(0.5 \times 10^5 \text{ cell/mL})$ were studied by incubating the cells with **BDPMBD** (100 μ M). After 18 h of incubation, the cells were subsequently stained with Nile red (0.3 μ M). Then the cells were washed twice with 1xPBS to remove the excess uninternalized compounds. The coverslips containing the live cells were then mounted on clean glass slides and the cells were observed under a confocal fluorescence microscope using different emission filters.

pH sensing studies of InMBD, BInMBD, and BDPMBD in Baker's yeast, *Escherichia coli*, and *Bacillus subtilis* cells.

Briefly, yeast, *E. coli* and *B. subtilis* cells were separately incubated with a fixed concentration (100 μ M) of the compounds for 4 h. The cells were then harvested and washed twice with 1xPBS. Further, the cells were fixed with 4% formaldehyde solution for 30 min at RT. After this, the cell suspension was centrifuged and the supernatant containing 4% formaldehyde solution was decanted. The yeast and bacterial cells were then incubated with buffer solutions ranging from pH 1-9 for 1 h at room temperature to equilibrate the intracellular pH with the pH of the buffers.

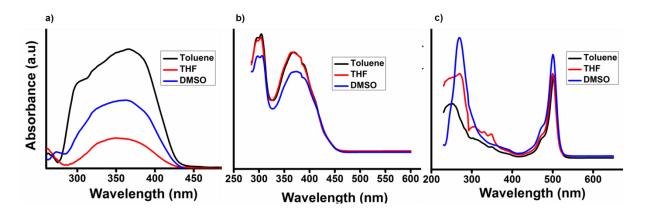
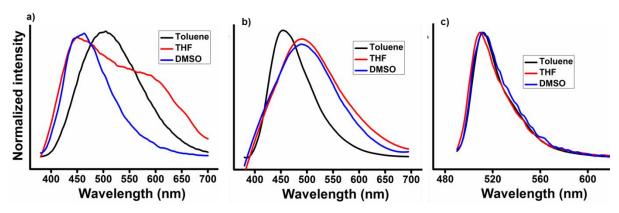



Fig. S2 Absorption spectra of 5×10^{-5} M solution of a) InMBD, b) BInMBD, & c) BDPMBD in different solvents.

Fig. S3 Emission spectra of 5×10^{-5} M solution of a) **InMBD**, b) **BInMBD**, & c) **BDPMBD** in different solvents.

Solvent	Absorbance	Emission	Stokes shift	Quantum	Quantum
	(nm)	(nm)	(nm)	yield*	yield at
					pH=2*
Toluene	365	502	137	0.223	
THF	357	450	93	0.041	0.090
Ethyl acetate	354	507	153	0.043	
Acetonitrile	354	450	96	0.034	0.078
DMF	357	444	87	0.053	
DMSO	362	463	101	0.032	0.069

Table S2. Spectral data of InMBD in different solvents.

*Quantum yield measurements were done using quinine sulphate as the standard.

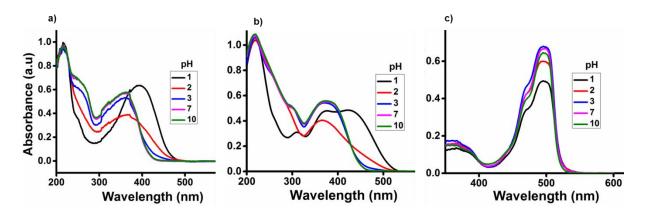

Solvent	Absorbance (nm)	Emission (nm)	Stokes shift (nm)	Quantum yield*	Quantum yield at pH=2*
Toluene	367	455	88	0.154	
THF	367	490	123	0.073	0.168
Ethyl acetate	364	492	128	0.057	
Acetonitrile	362	493	131	0.037	0.124
DMF	366	487	121	0.082	
DMSO	373	490	117	0.040	0.160

Table S3. Spectral data of BInMBD in different solvents.

*Quantum yield measurements were done using quinine sulphate as the standard.

Solvent	Absorbance (nm)	Emission (nm)	Stokes shift (nm)	Quantum yield*	Quantum yield at
					pH=2*
Toluene	502	512	10	0.58	
THF	500	510	10	0.202	
Ethyl acetate	498	507	9	0.311	
Acetonitrile	496	507	11	0.136	
DMF	500	510	10	0.103	
DMSO	500	511	11	0.092	0.332

*Quantum yield measurements were done using quinine sulphate as the standard.

Fig. S4 pH-dependent absorption spectra of 5×10^{-5} M solution of a) **InMBD** b) **BInMBD** & c) **BDPMBD** in acetonitrile (MeCN):BR buffer (1:1).

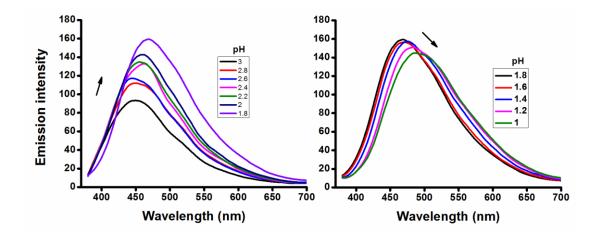


Fig. S5 pH-dependent emission spectra of 5×10^{-5} M solution of InMBD ($\lambda_{ex} = 360$ nm).

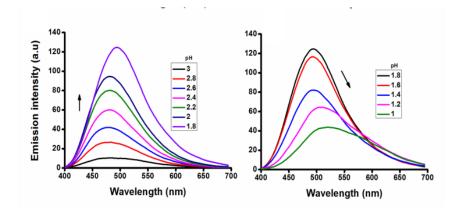
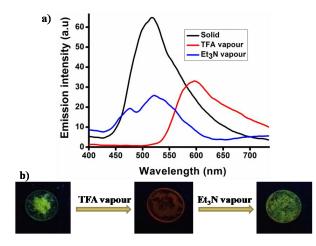
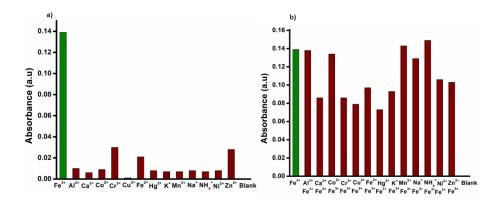
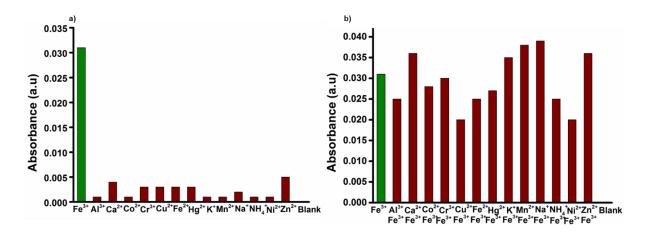
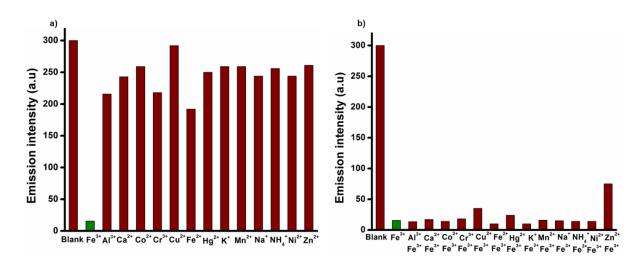




Fig. S6 pH-dependent emission spectra of 5×10^{-5} M solution of BInMBD (λ_{ex} = 360 nm).


Fig. S7 a) Emission spectra of solid **BInMBD** on exposure to acid and base vapours b) photograph under UV light of 365 nm.


Fig. S8 a) The selectivity and b) competitive selectivity of **InMBD** (20 μ M) towards Fe³⁺ (absorbance at 630 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).

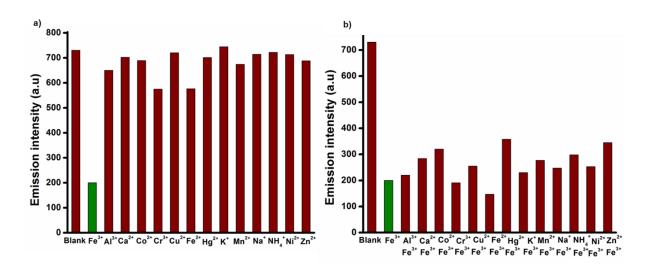
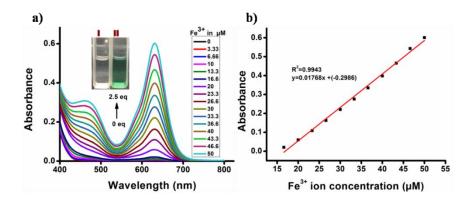

Fig. S9 a) The selectivity and b) competitive selectivity of **BInMBD** (20 μ M) towards Fe³⁺ (absorbance at 630 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).

Fig. S10 a) The selectivity and b) competitive selectivity of **BDPMBD** (10 μ M) towards Fe³⁺ (absorbance at 630 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).


Fig. S11 a) The selectivity and b) competitive selectivity of **InMBD** (20 μ M) towards Fe³⁺ (emission at 417 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).

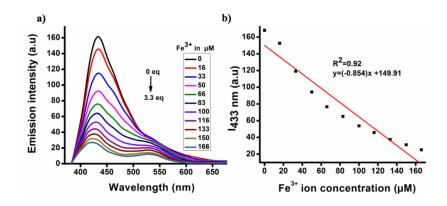

Fig. S12 a) The selectivity and b) competitive selectivity of **BInMBD** (20 μ M) towards Fe³⁺ (emission at 444 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).

Fig. S13 a) The selectivity and b) competitive selectivity of **BDPMBD** (10 μ M) towards Fe³⁺ (emission at 498 nm; Fe³⁺ (5eq), Cr³⁺, Cu²⁺, Fe²⁺ (each 10 eq) and other metal ions (100 eq) were used).

Fig. S14 a) Absorption spectra of 2×10^{-5} M solution of **InMBD** in the presence of varying amounts of Fe³⁺; Inset: I-before & II- after addition of Fe³⁺ & b) the corresponding calibration plot.

Fig. S15 a) Emission spectra of 5×10^{-5} M solution of **InMBD** in presence of varying amounts of Fe³⁺ & b) the corresponding calibration plot.

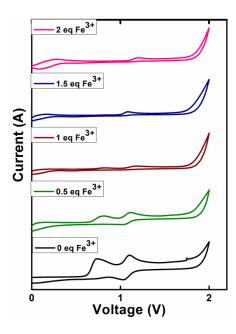
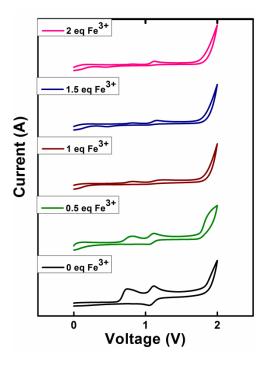
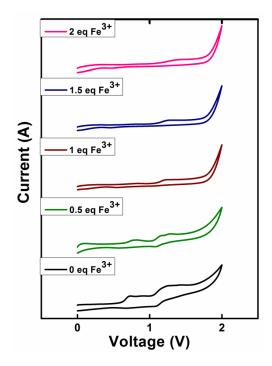
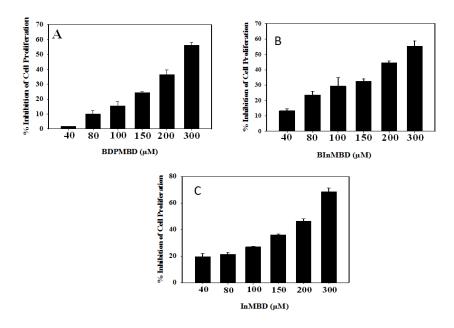
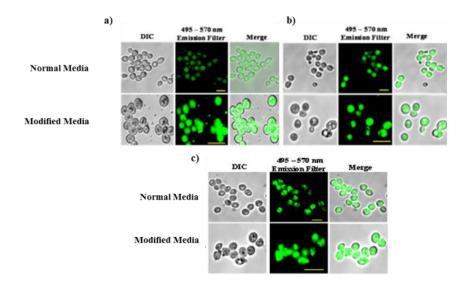




Fig. S16 Cyclic voltammogram of InMBD with varying concentration of Fe³⁺. Scan rate = 100 mV/s, V vs $Ag/Ag^{+}_{(aq)}$.

Fig. S17 Cyclic voltammogram of **BInMBD** with varying concentration of Fe³⁺. Scan rate = 100 mV/s, V vs Ag/Ag⁺_(aq).


Fig. S18 Cyclic voltammogram of **BDPMBD** with varying concentration of Fe³⁺. Scan rate = 100 mV/s, V vs Ag/Ag⁺_(aq).

Determination of cytotoxicity using Sulforhodamine B (SRB) assay


The effect of the compounds **BDPMBD**, **BInMBD**, and **InMBD** on the proliferation of HeLa cells was determined by performing the standard SRB assay. Briefly, HeLa cells were seeded in the 96-well plates at a seeding density of 0.5×10^5 cells/mL. After 24 h, the medium of the cells was changed and the fresh medium containing different concentrations (0-300 µM) of **BDPMBD**, **BInMBD**, or **InMBD** was added. The cells were then allowed to grown in the presence of the compounds for one cell cycle. After 24 h, the cells were fixed with 10% trichloroacetic acid and were subsequently stained with 0.4% SRB for 1 h. The cell-bound dye was then extracted with 10 mM Tris base (pH 10.5) and the optical density at 560 nm was determined using 96-well micro plate reader. The percentage inhibition of cell proliferation was determined as described previously.

The compounds BDPMBD, BInMBD, and InMBD induced minimal toxicity in HeLa cells

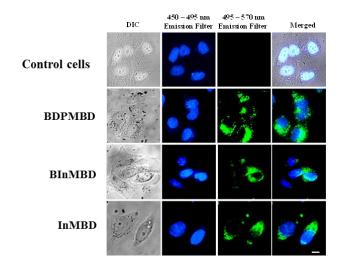
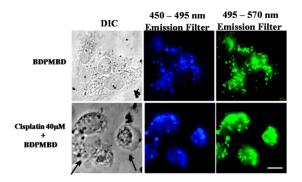
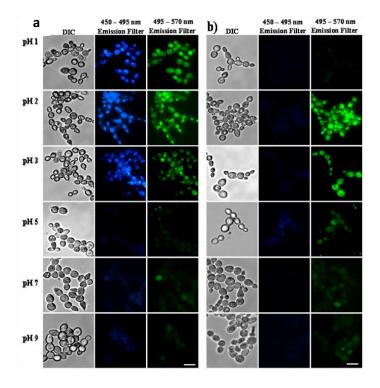
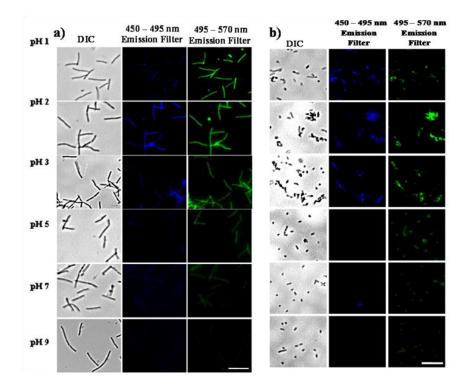

The effect of the compounds **BDPMBD**, **InMBD**, and **BInMBD** on the proliferation of HeLa cells was determined using SRB assay. It is evident from Fig. S19 A that the compound **BDPMBD** inhibited proliferation of HeLa cells in a concentration dependent manner with an IC₅₀ value of 270 µM. Increasing concentrations of the compound **BDPMBD** such as 40, 80, 100, 150, 200, and 300 µM inhibited the proliferation of HeLa cells by 2, 10, 15, 24, 36, and 56% respectively. The compound **BInMBD** inhibited the proliferation of HeLa cells with an IC_{50} value of 240 μ M. Increasing concentrations of the compound **BInMBD** such as 40, 80, 100, 150, 200, and 300 µM inhibited the proliferation of HeLa cells by 13, 24, 29, 33, 45, and 55% respectively (Fig. S19 B). The compound InMBD inhibited the proliferation of HeLa cells with an IC₅₀ value of 215 µM. Increasing concentrations of the compound **InMBD** such as 40, 80, 100, 150, 200, and 300 µM inhibited the proliferation of HeLa cells by 19, 21, 27, 36, 46, and 69% respectively (Fig. S19 C). Our results indicate that the compound InMBD (IC₅₀ value of 215 µM) exhibited better anti-proliferative potency as compared to **BDPMBD** and BInMBD in the HeLa cells. Also the data indicates all the three compounds exhibited relatively higher IC_{50} values indicating that the exposure to these compounds caused minimal toxicity in the HeLa cells.

Fig. S19 HeLa cells $(0.5 \times 10^5 \text{ cells/mL})$ were incubated in the absence and presence of the compounds A) **BDPMBD** B) **BInMBD** C) **InMBD** for 24 h and the percentage inhibition of cell proliferation was determined by using SRB assay. The experiment was performed three times. Error bars represent \pm SD.

Fig. S20 Cellular localization of compounds a) **InMBD** b) **BInMBD**, & c) **BDPMBD** in yeast cells. Scale bar =10 μm.

Fig. S21 Cellular localization of the compounds **BDPMBD**, **BInMBD**, and **InMBD** in fixed HeLa cells. Scale bar = $10 \mu m$.

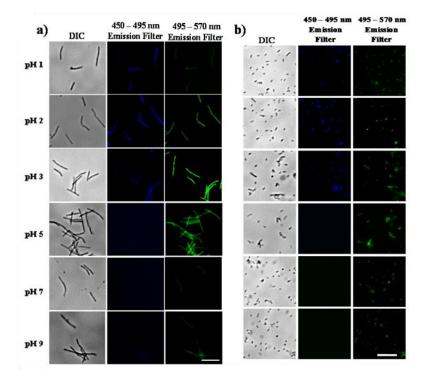

Fig. S22 Detection of apoptotic cells using **BDPMBD**. Scale bar =10 μ m.

Fig. S23 pH-dependent fluorescence switching of compounds a) **BInMBD** and b) **InMBD** in *S. cerevisiae* cells. Scale bar =10 μ m.

Fig. S24 pH-dependent fluorescence switching of **BInMBD** in a) gram-positive bacteria *Bacillus subtilis* & b) gram-negative bacteria *E. Coli.* Scale bar = 5 μ m.

Figure S25. pH-dependent fluorescence switching of **InMBD**, in a) gram-positive bacteria *Bacillus subtilis* & b) gram-negative bacteria *E. Coli*. Scale bar =5 μ m.

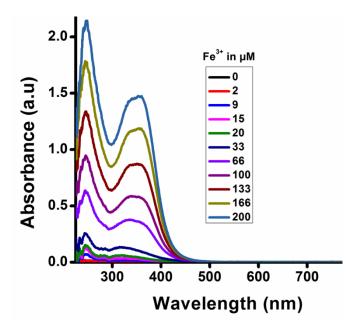


Figure S26. Absorption spectra of Fe³⁺ in ethanol at a concentration range of 0-200 μ M.

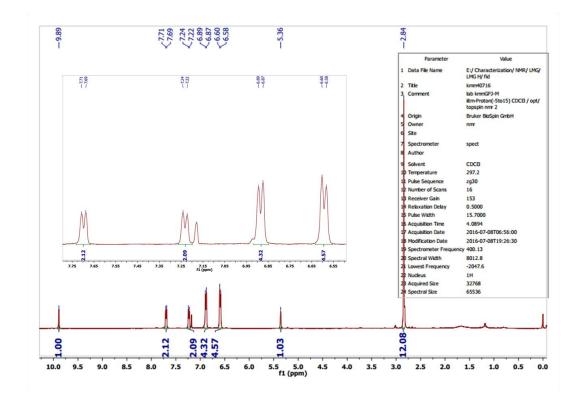


Fig. S27 ¹H NMR spectrum of LMG-CHO (400 MHz, CDCl₃).

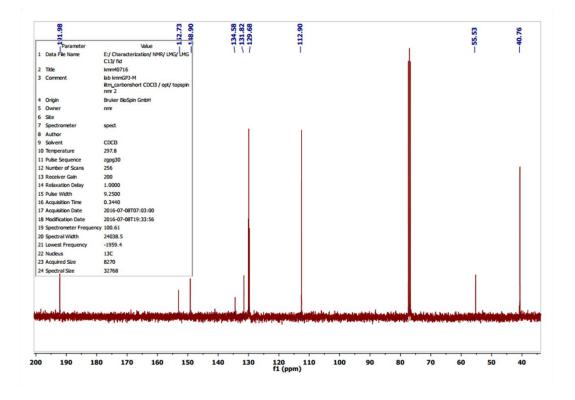


Fig. S28¹³C NMR spectrum of LMG-CHO (100 MHz, CDCl₃).

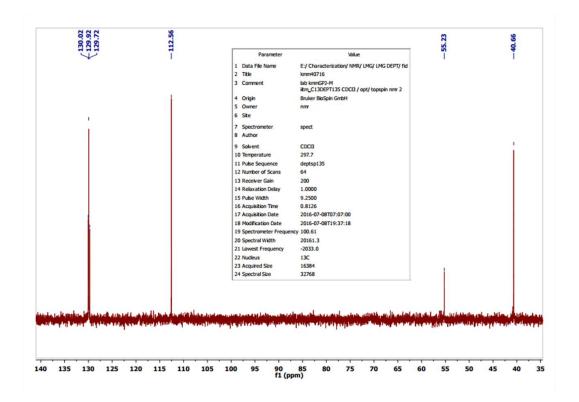


Fig. S29 DEPT-135 of LMG-CHO (100 MHz, CDCl₃).

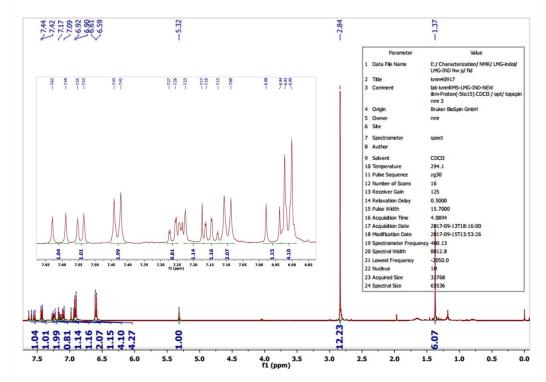


Fig. S30 ¹H NMR spectrum of InMBD (400 MHz, CDCl₃).

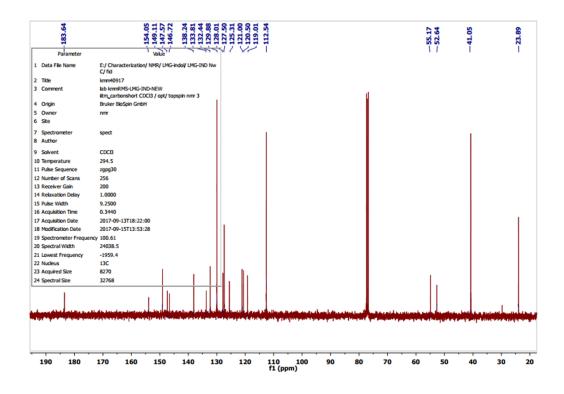


Fig. S31 ¹³C NMR spectrum of InMBD (100 MHz, CDCl₃).

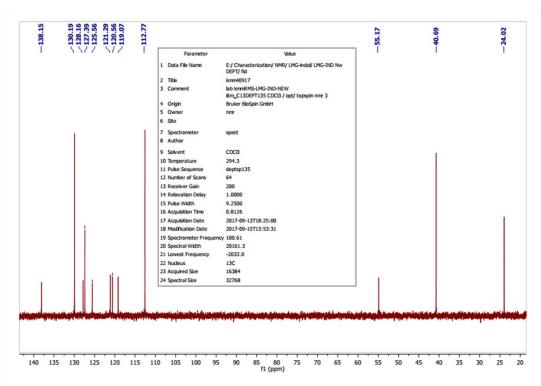


Fig. S32 DEPT-135 of InMBD (100 MHz, CDCl₃).

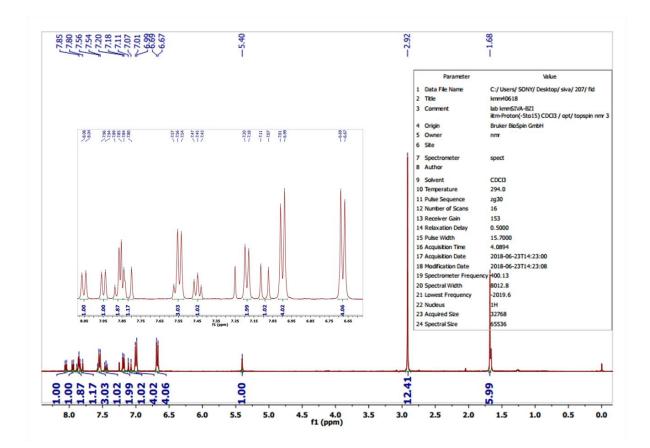


Fig. S33 ¹H NMR spectrum of BInMBD (400 MHz, CDCl₃).

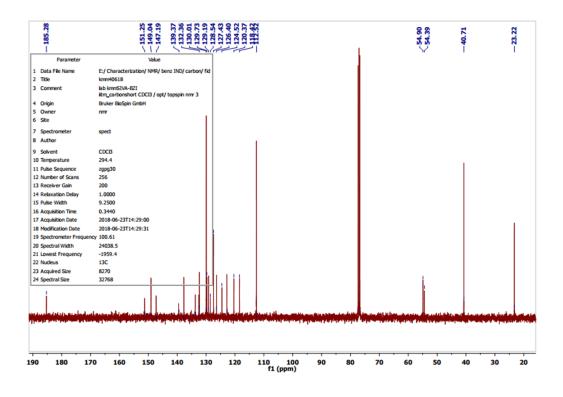


Fig. S34 ¹³C NMR spectrum of BInMBD (100 MHz, CDCl₃).

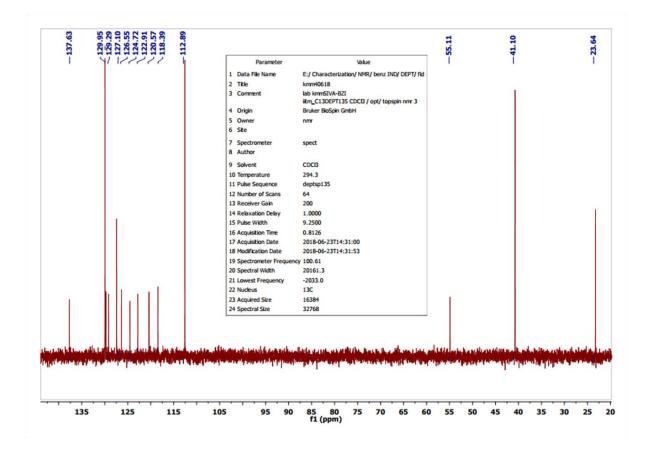


Fig. S35 DEPT-135 of BInMBD (100MHz, CDCl₃).

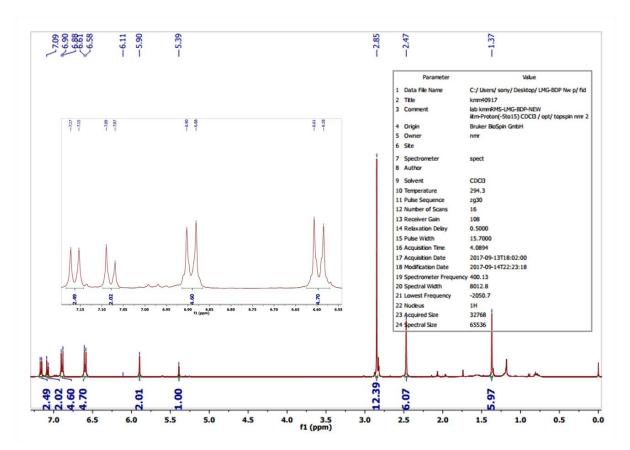


Fig. S36 ¹H NMR spectrum of BDPMBD (400 MHz, CDCl₃).

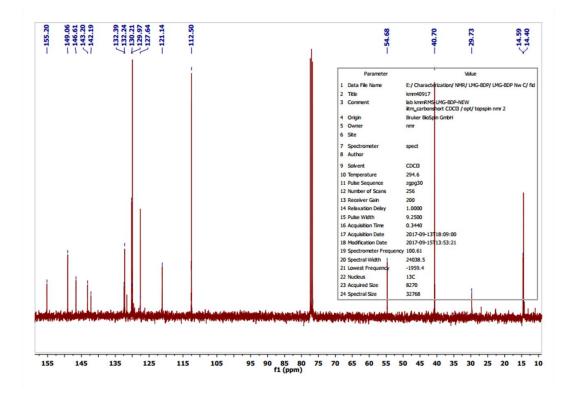


Fig. S37 ¹³C NMR spectrum of BDPMBD (100 MHz, CDCl₃).

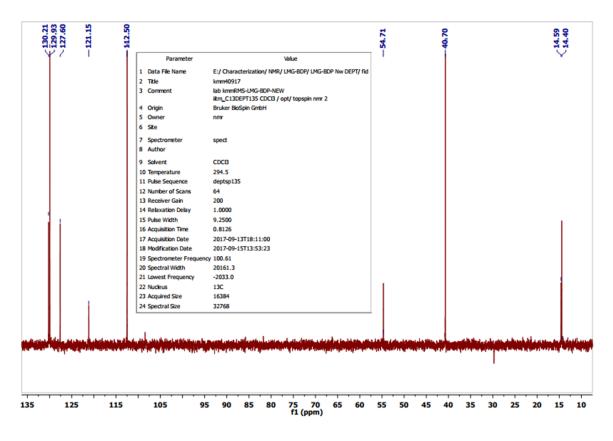


Fig. S38 DEPT-135 of BDPMBD (100 MHz, CDCl₃).

Data File	LMG.d	Sample Name	100119-14-KMM-LMG
Sample Type	Sample	Position	P2-83
Instrument Name	Instrument 1	User Name	
Acq Method	Direct Infusion_HPLC.m	Acquired Time	10-01-2019 11:03:53 (UTC+05:30)
IRM Calibration Status	Success	DA Method	Defaultum
Comment			
Sample Group		Info.	
Stream Name	LC 1	Acquisition Time (Local)	10-01-2019 11:03:53 (UTC+05:30)
Acquisition SW Version	6200 series TOF/6500 series Q-TOF 8.08.00 (88058.0)	QTOF Driver Version	8.00.00
QTOF Firmware Version	20.698	Tune Mass Range Max.	3200

c	ompound Table							
	Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)	Hits (DB)
	Cpd 1: C24 H26 N2 O; 0.573	0.573	358.2064	\$176	C24 H26 N2 O	358.2045	5.14	1

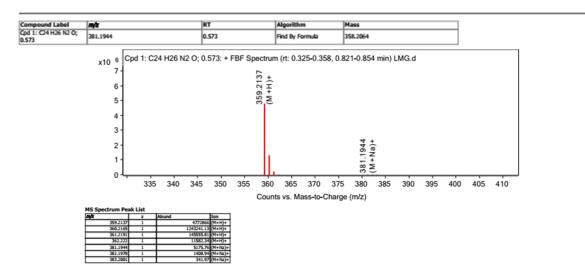


Fig. S39 Mass spectrum of LMG-CHO.

Data File	2SIND.d	Sample Name	250618-05-KMM-IND
Sample Type	Sample	Position	P2-A5
Instrument Name	Instrument 1	User Name	
Acq Method	Direct Infusion_HPLC.m	Acquired Time	25-06-2018 12:14:06 (UTC+05:30)
IRM Calibration Status	Success	DA Method	Defaultum
Comment			
Sample Group		Info.	
Stream Name	LC 1	Acquisition Time (Local)	25-06-2018 12:14:06 (UTC+05:30)
Acquisition SW Version	6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0)	QTOF Driver Version	8.00.00
QTOF Firmware Version	20.698	Tune Mass Range Max.	3200

Compound Label RT Mass Abund Formula Tot		
Compound Label RT Mass Abund Formula Tgt	Mass Diff (ppm)	Hits (DB)
Cpd 1: C35 H37 N3; 0.533 0.533 499.2998 3415605 C35 H37 N3	499.2987 2.0	4 1

Fig. S40 Mass spectrum of InMBD.

c	Compound Table							
- [Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)	Hits (DB)
- [Cpd 1: C39 H39 N3; 0.252	0.252	549.3142	1435818	C39 H39 N3	549,3144	-0.31	1

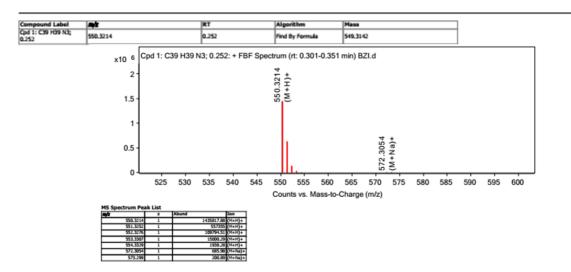


Fig. S41 Mass spectrum of BInMBD.

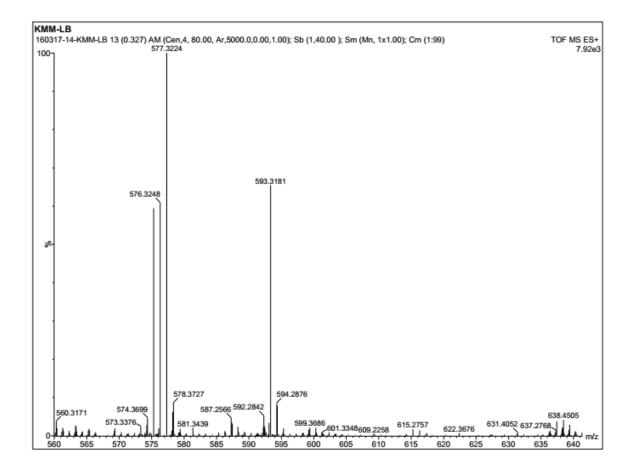


Fig. S42 Mass spectrum of BDPMBD.