# 3D heterometallic $\mathbf{N i}(\mathrm{II}) / \mathrm{K}(\mathrm{I})$ MOF with a rare rna topology: synthesis, structural features, and photocatalytic dye degradation modeling ${ }^{\dagger}$ 

Marjan Abedi ${ }^{\text {a }}$, Ghodrat Mahmoudi ${ }^{b^{*}}$, Payam Hayati ${ }^{c^{*}}$, Barbara Machura ${ }^{\text {d }}$, Fedor I. Zubkov, ${ }^{\text {e }}$ Khosro Mohammadic ${ }^{\text {c }}$, Shima Bahrami ${ }^{\mathrm{f}}$, Hadis Derikvandi ${ }^{\mathrm{g}}$, Zohreh Mehrabadi ${ }^{\text {h }}$ and Alexander M. Kirillov ${ }^{\mathrm{i}, \mathrm{e}^{*}}$<br>${ }^{a}$ Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran<br>${ }^{b}$ Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran; Email: ghodratmahmoudi@gmail.com<br>${ }^{c}$ Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran; E-mail: payamhayati@yahoo.com<br>${ }^{d}$ Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St 40-006 Katowice, Poland<br>${ }^{e}$ Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation<br>${ }^{f}$ Department of Environmental Health, School of Health, Shiraz University of Medical Science, Shiraz, Iran<br>${ }^{g}$ Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186, Tehran, Iran<br>${ }^{h}$ Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran<br>${ }^{i}$ Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal; E-mail: kirillov@tecnico.ulisboa.pt



Figure S1. IR spectra of $\mathbf{1}$ (top: as synthesized microcrystals) and $\mathbf{1 s}$ (bottom: sonochemically prepared sample).


Figure S2. PXRD patterns: compound 1s (top: sonochemical synthesis), simulated from single crystal Xray data of $\mathbf{1}$ (bottom).


Figure S3. TGA of 1s (sample of entry 5, Table 3).




Figure S4. (a) UV-Vis DRS of 1s. (b,c) Typical Tauc plots for allowed direct (b) and indirect (c) transitions in $\mathbf{1 s}$.

Table S1. Central composite design with predictive values and their experimental results in photocatalytic experiments.

|  | Factor level |  |  |  |  | Response: Deg. (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trial no. | $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $\mathrm{X}_{3}$ | $\mathrm{X}_{4}$ | Observed | Predicted |  |
|  | 0 | 0 | 0 | +2 | 87.8 | 85.7 |  |
| 1 | -1 | +1 | +1 | -1 | 7.3 | 69.6 |  |
| 2 | 0 | 0 | 0 | 0 | 94.5 | 93.5 |  |
| 3 | -1 | +1 | -1 | -1 | 7.3 | 71.5 |  |
| 4 | -1 | +1 | +1 | +1 | 7.3 | 70.3 |  |
| 5 | +1 | -1 | -1 | -1 | 79.6 | 79.2 |  |
| 6 | +1 | -1 | -1 | +1 | 84.0 | 82.8 |  |
| 7 | +1 | +1 | +1 | -1 | 79.3 | 79.6 |  |
| 8 | +1 | +1 | -1 | +1 | 88.4 | 87.2 |  |
| 9 | 0 | 0 | 0 | 0 | 94.3 | 92.8 |  |
| 10 | +2 | 0 | -1 | 0 | 9.6 | 93.5 |  |
| 11 | 0 | 0 | +1 | -2 | 80.6 | 80.7 |  |
| 12 | 0 | -1 | 0 | 91.0 | 93.4 |  |  |
| 13 | 0 | 0 | -1 | +1 | 70.7 | 72.9 |  |
| 14 | -1 | +1 | -1 | +1 | 64.7 | 65.8 |  |
| 15 | -1 | -1 | +1 | -1 | 75.9 | 76.6 |  |
| 16 | +1 | -1 | 0 | -1 | 9.9 | 93.5 |  |
| 17 | 0 | 0 | +1 | 0 | 94.9 | 84.0 |  |
| 18 | -1 | +1 | +1 | -1 | 85.5 |  |  |


| 19 | 0 | 0 | 0 | 0 | 80.9 | 80.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | +1 | 0 | -1 | -1 | 97.9 | 98.6 |
| 21 | 0 | +1 | 0 | 0 | 81.0 | 80.0 |
| 22 | 0 | 0 | -2 | 0 | 92.2 | 93.5 |
| 23 | +1 | +1 | 0 | +1 | 100.0 | 97.8 |
| 24 | 0 | -2 | 0 | 0 | 70.6 | 70.3 |
| 25 | -1 | -1 | 0 | +1 | 83.0 | 82.3 |
| 26 | +1 | -1 | 0 | +1 | 78.5 | 81.0 |
| 27 | -1 | -1 | 0 | +1 | 61.7 | 63.3 |
| 28 | -2 | 0 | +2 | 0 | 65.4 | 65.1 |
| 29 | 0 | 0 | 0 | 0 | 92.5 | 93.4 |
| 30 | 0 | +2 | 0 | 0 | 80.0 | 80.4 |

Table S2. Comparison of different photocatalysts for BCG degradation.

| Catalyst | Initial Concentration (BCG) | Irradiation Time (min) | \% Degradation Efficiency (\%) | Ref. |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Ni}(\mathrm{II}) / \mathrm{K}(\mathrm{I}) \mathrm{MOF}$ | $6.0 \mathrm{mg} / \mathrm{L}$ | 46 | 94 | This work |
| $\mathrm{Ti} / \mathrm{SnO}_{2}-\mathrm{RuO}_{2}$ | $100 \mathrm{mg} / \mathrm{L}$ | 150 | 91 | $[50]$ |
| $\mathrm{Fe}(\mathrm{III}) / \mathrm{H}_{2} \mathrm{O}_{2}$ | $6 \times 10^{-5} \mathrm{M}$ | 70 | 74 | $[51]$ |
| $\mathrm{PTA} / \mathrm{ZR13}^{\mathrm{MnO}}$ | $1 \times 10^{-5} \mathrm{M}$ | 20 | 73 | $[52]$ |
| ZnO | $1 \times 10^{-5} \mathrm{M}$ | 75 | 64 | $[53]$ |
| $\mathrm{WO}_{3} / \mathrm{ZnO}$ | $1 \times 10^{-5} \mathrm{M}$ | 75 | 60 | $[53]$ |
| $\mathrm{CuS}-\mathrm{Cp}$ | $10.0 \mathrm{mg} / \mathrm{L}$ | 480 | 60 | $[54]$ |
| $\mathrm{ZnO}-\mathrm{Cp}$ | $10.0 \mathrm{mg} / \mathrm{L}$ | 480 | 56 | $[54]$ |

