Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Two New Tin(IV)-containing Phosphate Fluorides with Two Types of Sn(IV)-P-O-F frameworks and Short Cutoff Edges

Shuaishuai Hu,^a Zhi Su*^a

College of Chemistry and Chemical Engineering, Xinjiang Normal University. Urumqi, Xinjiang 830054, China. E-mail: suzhixj@sina.com

EXPERIMENTAL SECTION

Synthesis

The raw materials of KF and SnF₂ were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd, KH₂PO₄ was purchased from Tianjin Baishi Chemical Industry Co., Ltd, KBF₄ was purchased from Tianjin Damao Chemical reagent Co., Ltd. Above reagents are analytical purity.

Crystals of K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂ were grown by high-temperature solidphase reaction in the sealed system. First, the mixed KF, SnF₂, KH₂PO₄ and KBF₄ with the molar ratio of 6:3:4:4 for K₂SnPO₄F₃ were loaded into a tidy tube, and then made the tube flame-sealed under 10⁻³ Pa. After that, the sealed tube was put in the muffle furnace, heated to 400 °C, and held 10h at this temperature. Subsequently, it was cooled to 300 °C at a rate of 1 °C/h, then cooled to 150 °C at a rate of 2 °C/h, finally lowered to 30 °C at a rate of 10 °C/h. In the cooling process, the K₂SnPO₄F₃ crystals were obtained. Another crystal was successfully obtained through the similar process. The solution was prepared for K₆Sn(P₂O₇)₂F₂ by melting mixtures of KF, SnF₂, KH₂PO₄ and KBF₄ in a molar ratio of 6:3:2:8.

The polycrystalline samples of K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂ were synthesized by solid-state reaction. The mixtures of KH₂PO₄, SnF₂ and KF with the molar ratio 1 : 1 : 1 for K₂SnPO₄F₃, 4 :1 :2 for K₆Sn(P₂O₇)₂F₂, were ground evenly. Subsequently, the K₂SnPO₄F₃ mixture was heated to 120 °C slowly and held 4h at this temperature, which was aimed to decompose the phosphate, then elevated to 350 °C and held 6 day. Finally, it was cooled to room temperature naturally. Also, the K₆Sn(P₂O₇)₂F₂ mixture was heated to 280 °C slowly and held at this temperature for 3 day, then cooled to room temperature. In this process, the target samples were obtained.

Characterization.

The powder X-ray Diffraction (PXRD) of polycrystalline samples was carried out by Bruker D2 PHASER diffractometer equipped with Cu K α radiation at room temperature. The scan step width and fixed counting time are 0.02° and 1s/step, respectively. The diffraction patterns were performed in the angular range of 2 θ =10– 70°. The measurement results for K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂ are shown in Fig. S8 (ESI[†]), which indicates that the experimental results agree well with the theoretical ones except several impurity peaks.

The single-crystal XRD data of K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂ were collected by using a Bruker SMART APEX II 4K CCD diffractometer equipment with Mo K α radiation (λ =0.71073 Å) at room temperature, and the data were integrated with a SAINT program.^[1] The direct methods and full-matrix least-squares program SHELXL were used to solve and refine the crystal structure, respectively.^[2] The final structures were rechecked by PLATON to verify the possibility of having the higher symmetric space. The information of crystal data and structural refinements is summarized in Table S1, the atomic coordinates and the equivalent isotropic displacement parameters are given in Tables S2 and S4 (ESI†). The selected bond lengths and angles are listed in the Tables S3 and S5 (ESI†).

Respectively, we mixed the powder samples with dried KBr and ground evenly. And the IR spectra were collected by Shimadzu IRAffinity-1 Fourier transform IR spectrometer with a resolution of 2 cm⁻¹ in the range of 400-4000 cm⁻¹ at room temperature.

The UV-Vis-NIR diffuse reflectance spectra were obtained by using polytetrafluoroethylene as a standard to collect the data of the title compounds on the Shimadzu SolidSpec-3700DUV spectrophotometer measure at room temperature, and the wavelength range was from 190 to 2500 nm. And the reflectance spectra converted to absorbance with the Kubelka–Munk function to calculate the band gap of title compounds.^[3]

Theoretical Calculations.

The electronic and band structures were calculated for title compounds by the CASTEP software,^[4] a plane-wave pseudopotential DFT package, with the norm-conserving pseudopotentials.^[5-7] The exchange-correlation functional was Perdew-Burke-Emzerhof (PBE) functional within the generalized gradient approximation (GGA).^[8] The plane-wave energy cutoff was set at 850.0 eV. Self-consistent field (SCF) calculations were performed with a convergence criterion of 1×10^{-6} eV/atom on the total energy. The k-point separation for each material was set as 0.07 Å⁻¹ in the Brillouin

zone. The valence electrons of the elements in K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂ were calculated as follows: K $3s^23p^64s^1$, Sn $5s^25p^2$, P $3s^23p^3$, O $2s^22p^4$ and F $2s^22p^5$ respectively. The empty bands were set as 3 times the valence bands in the calculation to ensure the convergence of optical properties. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization technique was employed in geometry optimization during the calculation and the converged criteria are that the residual forces on the atoms, the displacements and the energy change of atoms are less than 0.01 eV/Å, 5 × 10^{-4} Å and 5.0 × 10^{-6} eV, respectively. The default values of the CASTEP code were retained for other parameters and convergent criteria.

Empirical formula	$K_2SnPO_4F_3$	$K_6Sn(P_2O_7)_2F_2$	
Formula weight	348.86	739.17	
Temperature (K)	296(2)	296(2)	
Wavelength (Å)	0.71073	0.71073	
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	
<i>a</i> (Å), α (deg.)	10.0393(12)	8.515(3)	
b (Å), β (deg.)	9.4153(11), 95.4640(13)	12.400(5), 99.589(4)	
<i>c</i> (Å), γ (deg.)	21.602(3)	8.403(3)	
Volume (Å ³)	2032.6(4)	874.8(6)	
Z, Calculated density (g/cm ³)	12, 3.420	2, 2.806	
Absorption coefficient (mm ⁻¹)	5.257	3.340	
<i>F</i> (000)	1944	708	
Theta range for data collection (deg.)	1.894 to 27.453	2.426 to 24.998	
Limiting indians	-13≤ <i>h</i> ≤12, -6≤ <i>k</i> ≤12, -	-10≤ <i>h</i> ≤10, -14≤ <i>k</i> ≤7, -	
Limiting indices	27 <i>≤l≤</i> 28	9 <i>≤l</i> ≤9	
Deflections collected (unique	12239/4626 [<i>R</i> _{int} =	4246/1527 [D 0.0267]	
Reflections collected / unique	0.0380]	$4340/132/[K_{int} = 0.020/]$	
Completeness	99.70%	99.70%	
Pafinament method	Full-matrix least-squares	Full-matrix least-squares	
Kermement method	on F_o^2	on F_o^2	
Data / restraints / parameters	4626/0/298	1527/0/125	
Goodness-of-fit on F_o^2	0.913	1.082	
Einal <i>B</i> indians $[E^2 > 2\pi (E^2)]^d$	$R_1 = 0.0315, wR_2 =$	$R_1 = 0.0245, wR_2 =$	
Final K matces $[F_0^- > 20(F_0^-)]$	0.0549	0.0610	
D indiana (all data) a	$R_1 = 0.0489, wR_2 =$	$R_1 = 0.0288, wR_2 =$	
K malces (an data)	0.0608	0.0628	
Largest diff. peak and hole (eÅ-3)	0.791 and -0.764	0.522 and -0.456	
	- (-2) -2 $2/ -4$ $-1/2$		

Table S1 Crystal data and structure refinement for K₂SnPO₄F₃ and K₆Sn(P₂O₇)₂F₂.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ and } wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma (F_{o}^{2}).$

e ij temsent					
Atoms	Х	У	Z	U(eq)	BVS
K(1)	-407(1)	8413(1)	2252(1)	20(1)	1.282916
K(2)	4904(1)	6384(1)	638(1)	18(1)	1.192665
K(3)	637(1)	1426(1)	1272(1)	22(1)	1.190087
K(4)	7029(1)	9628(1)	3766(1)	25(1)	0.897574
K(5)	2823(1)	352(2)	2985(1)	37(1)	0.784108
K(6)	7569(1)	9860(2)	292(1)	27(1)	1.01138
Sn(1)	677(1)	7164(1)	528(1)	9(1)	4.368166
Sn(2)	4278(1)	2004(1)	1087(1)	10(1)	4.359708
Sn(3)	5888(1)	7847(1)	2272(1)	9(1)	4.33607
P(1)	2058(1)	4043(1)	288(1)	11(1)	5.106152
P(2)	3033(1)	8860(1)	1388(1)	10(1)	5.039987
P(3)	7212(1)	10791(1)	1790(1)	10(1)	5.055351
O(1)	2593(3)	3145(4)	859(2)	21(1)	2.150708
O(2)	3152(3)	10195(4)	975(1)	14(1)	2.185245
O(3)	2535(3)	7636(4)	938(2)	15(1)	2.096459
O(4)	2140(4)	9096(4)	1886(2)	21(1)	1.943859
O(5)	4477(3)	8422(4)	1610(2)	19(1)	2.154366
O(6)	8370(3)	10237(4)	1482(2)	16(1)	2.211317
O(7)	6803(3)	9760(4)	2297(2)	14(1)	2.07433
O(8)	6016(3)	11015(4)	1300(2)	16(1)	2.120641
O(9)	7531(3)	12231(4)	2120(2)	16(1)	2.110797
O(10)	1070(3)	5079(4)	559(2)	16(1)	2.032661
O(11)	3119(3)	4753(4)	-30(2)	19(1)	2.062585
O(12)	1233(4)	3021(4)	-152(2)	29(1)	2.113841
F(1)	1266(3)	7433(3)	-310(1)	22(1)	0.98082
F(2)	41(3)	6780(3)	1346(1)	20(1)	1.119691
F(3)	283(3)	9192(3)	564(1)	22(1)	1.095531
F(4)	4951(3)	8547(3)	2979(1)	19(1)	1.109069
F(5)	6839(3)	7064(3)	1595(1)	25(1)	1.022217
F(6)	4895(3)	6064(3)	2346(1)	26(1)	1.026293
F(7)	3815(3)	2071(4)	1951(1)	27(1)	0.993276
F(8)	4593(3)	1778(3)	209(1)	22(1)	1.027521
F(9)	5251(3)	3809(3)	1196(2)	30(1)	0.992935

Table S2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å² × 10^3) for K₂SnPO₄F₃. U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table S3. Selected bond lengths and angles for K₂SnPO₄F₃.

K(1)-F(2)	2.562(3)	P(2)-O(4)	1.482(4)
K(1)-F(7)#1	2.567(3)	P(2)-O(5)	1.539(3)
K(1)-O(6)#2	2.615(3)	P(2)-O(2)	1.551(3)
K(1)-F(6)#1	2.677(3)	P(2)-O(3)	1.559(3)
K(1)-O(4)	2.822(4)	P(3)-O(6)	1.488(3)
K(1)-O(9)#3	2.860(4)	P(3)-O(8)	1.539(3)
K(1)-O(7)#2	3.084(4)	P(3)-O(7)	1.548(3)
K(1)-F(5)#2	3.244(3)	P(3)-O(9)	1.550(3)
K(1)-F(9)#1	3.362(3)	F(3)-Sn(1)-F(2)	93.39(12)
K(2)-F(8)#5	2.602(3)	F(3)-Sn(1)-F(1)	89.48(12)
K(2)-O(11)	2.675(3)	F(2)-Sn(1)-F(1)	176.41(12)
K(2)-O(11)#5	2.704(4)	F(3)-Sn(1)-O(10)	175.69(12)
K(2)-F(9)	2.715(3)	F(2)-Sn(1)-O(10)	82.48(13)
K(2)-F(5)	2.775(3)	F(1)-Sn(1)-O(10)	94.69(13)
K(2)-O(3)	2.786(4)	F(3)-Sn(1)-O(12)#9	84.99(13)
K(2)-O(5)	2.908(4)	F(2)-Sn(1)-O(12)#9	88.20(14)
K(3)-F(3)#7	2.606(3)	F(1)-Sn(1)-O(12)#9	89.92(14)
K(3)-O(6)#8	2.614(3)	O(10)-Sn(1)-O(12)#9	96.10(14)
K(3)-F(4)#3	2.671(3)	F(3)-Sn(1)-O(3)	87.11(13)
K(3)-O(1)	2.758(4)	F(2)-Sn(1)-O(3)	90.64(12)
K(3)-F(1)#9	2.893(3)	F(1)-Sn(1)-O(3)	91.65(13)
K(3)-O(2)#7	2.905(3)	O(10)-Sn(1)-O(3)	91.67(13)
K(3)-O(4)#7	2.909(4)	O(12)#9-Sn(1)-O(3)	171.93(14)
K(3)-F(6)#3	3.101(3)	F(9)-Sn(2)-F(8)	94.91(13)
K(4)-F(5)#10	2.707(3)	F(9)-Sn(2)-F(7)	91.03(13)
K(4)-F(4)	2.757(3)	F(8)-Sn(2)-F(7)	173.87(12)
K(4)-O(11)#11	2.787(3)	F(9)-Sn(2)-O(8)#7	87.83(13)
K(4)-F(9)#10	2.831(3)	F(8)-Sn(2)-O(8)#7	87.40(13)
K(4)-F(2)#1	2.896(3)	F(7)-Sn(2)-O(8)#7	94.37(13)
K(4)-F(1)#11	2.937(3)	F(9)-Sn(2)-O(1)	87.96(13)
K(4)-O(9)#6	3.018(4)	F(8)-Sn(2)-O(1)	91.72(13)
K(4)-O(7)	3.160(3)	F(7)-Sn(2)-O(1)	86.95(13)
K(4)-O(12)#11	3.370(4)	O(8)#7-Sn(2)-O(1)	175.60(14)
K(5)-O(4)#7	2.682(3)	F(9)-Sn(2)-O(2)#7	176.30(13)
K(5)-F(4)#7	2.730(3)	F(8)-Sn(2)-O(2)#7	86.21(12)
K(5)-F(2)#3	2.811(3)	F(7)-Sn(2)-O(2)#7	87.76(12)
K(5)-F(6)#3	2.834(3)	O(8)#7-Sn(2)-O(2)#7	95.75(13)
K(5)-F(7)	3.005(3)	O(1)-Sn(2)-O(2)#7	88.48(13)
K(5)-O(3)#3	3.214(4)	F(5)-Sn(3)-F(6)	91.48(13)
K(5)-O(10)#3	3.243(3)	F(5)-Sn(3)-F(4)	177.04(12)
K(5)-O(1)#3	3.307(4)	F(6)-Sn(3)-F(4)	86.54(13)
K(6)-O(6)	2.643(3)	F(5)-Sn(3)-O(5)	86.10(13)
K(6)-O(2)#12	2.764(3)	F(6)-Sn(3)-O(5)	87.63(13)

K(6)-F(8)#5	2.794(3)	F(4)-Sn(3)-O(5)	96.01(13)
K(6)-F(1)#12	2.803(3)	F(5)-Sn(3)-O(7)	95.93(13)
K(6)-F(3)#13	2.805(3)	F(6)-Sn(3)-O(7)	172.50(13)
K(6)-O(12)#5	2.995(4)	F(4)-Sn(3)-O(7)	86.00(13)
K(6)-O(8)	3.001(4)	O(5)-Sn(3)-O(7)	93.94(13)
K(6)-F(3)#12	3.102(3)	F(5)-Sn(3)-O(9)#6	88.21(12)
Sn(1)-F(3)	1.953(3)	F(6)-Sn(3)-O(9)#6	94.25(12)
Sn(1)-F(2)	1.970(3)	F(4)-Sn(3)-O(9)#6	89.74(12)
Sn(1)-F(1)	1.974(3)	O(5)-Sn(3)-O(9)#6	174.05(14)
Sn(1)-O(10)	2.002(3)	O(7)-Sn(3)-O(9)#6	84.93(13)
Sn(1)-O(12)#9	2.018(3)	O(11)-P(1)-O(12)	111.5(2)
Sn(1)-O(3)	2.036(3)	O(11)-P(1)-O(10)	114.0(2)
Sn(2)-F(9)	1.964(3)	O(12)-P(1)-O(10)	107.7(2)
Sn(2)-F(8)	1.964(3)	O(11)-P(1)-O(1)	113.84(19)
Sn(2)-F(7)	1.966(3)	O(12)-P(1)-O(1)	106.0(2)
Sn(2)-O(8)#7	1.992(3)	O(10)-P(1)-O(1)	103.19(19)
Sn(2)-O(1)	2.025(3)	O(4)-P(2)-O(5)	115.5(2)
Sn(2)-O(2)#7	2.046(3)	O(4)-P(2)-O(2)	112.3(2)
Sn(3)-F(5)	1.963(3)	O(5)-P(2)-O(2)	105.99(19)
Sn(3)-F(6)	1.966(3)	O(4)-P(2)-O(3)	112.5(2)
Sn(3)-F(4)	1.982(3)	O(5)-P(2)-O(3)	103.50(19)
Sn(3)-O(5)	1.989(3)	O(2)-P(2)-O(3)	106.18(18)
Sn(3)-O(7)	2.020(3)	O(6)-P(3)-O(8)	109.36(19)
Sn(3)-O(9)#6	2.046(3)	O(6)-P(3)-O(7)	111.62(19)
P(1)-O(11)	1.480(4)	O(8)-P(3)-O(7)	109.32(18)
P(1)-O(12)	1.536(3)	O(6)-P(3)-O(9)	112.1(2)
P(1)-O(10)	1.546(3)	O(8)-P(3)-O(9)	108.01(19)
P(1)-O(1)	1.549(3)	O(7)-P(3)-O(9)	106.31(18)

#1 -x+1/2,y+1/2,-z+1/2	#2 x-1,y,z	#3 -x+1/2,y-1/2,-z+1/2
#4 x,y+1,z	#5 -x+1,-y+1,-z	#6 -x+3/2,y-1/2,-z+1/2
#7 x,y-1,z	#8 x-1,y-1,z	#9 -x,-y+1,-z
#10 -x+3/2,y+1/2,-z+1/2	#11 x+1/2,-y+3/2,z+1/2	#12 -x+1,-y+2,-z
#13 x+1,y,z	#14 x+1,y+1,z	#15 x-1/2,-y+3/2,z-1/2

8	ŋ				
Atoms	Х	У	Z	U(eq)	BVS
K(1)	9083(1)	7434(1)	433(1)	27(1)	1.03
K(2)	1751(1)	5389(1)	2547(1)	24(1)	1.04
K(3)	4737(1)	7894(1)	896(1)	24(1)	1.06
Sn(1)	5000	5000	0	14(1)	4.33
P(1)	8034(1)	3619(1)	1781(1)	15(1)	5.02
P(2)	7252(1)	5604(1)	3317(1)	15(1)	5.02
O(1)	5662(3)	5763(2)	2117(3)	26(1)	2.04
O(2)	8610(3)	6168(2)	2784(3)	27(1)	2.01
O(3)	7021(3)	4127(2)	254(3)	20(1)	2.19
O(4)	6979(3)	9146(2)	-20(3)	19(1)	2.07
O(5)	7559(3)	4317(2)	3271(3)	15(1)	2.13
O(6)	2505(3)	7496(2)	-2061(3)	24(1)	1.91
O(7)	9755(3)	3754(2)	1740(3)	24(1)	2.04
F(1)	3945(3)	3851(2)	1098(3)	27(1)	0.93

Table S4. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for K₆Sn(P₂O₇)₂F₂. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Tuble De. Beleeted Bolla	tengens une ungles		
K(1)-O(2)	2.608(3)	P(2)-O(2)	1.481(3)
K(1)-O(7)#1	2.661(3)	P(2)-O(4)#9	1.486(3)
K(1)-O(4)	2.765(3)	P(2)-O(1)	1.562(3)
K(1)-O(2)#2	2.795(3)	P(2)-O(5)	1.621(3)
K(1)-O(7)#3	2.922(3)	F(1)#4-Sn(1)-F(1)	180
K(1)-F(1)#4	3.119(3)	F(1)#4-Sn(1)-O(1)	89.50(11)
K(1)-O(6)#5	3.301(3)	F(1)-Sn(1)-O(1)	90.50(11)
K(2)-O(7)#7	2.661(3)	F(1)#4-Sn(1)-O(1)#4	90.50(11)
K(2)-O(4)#8	2.667(3)	F(1)-Sn(1)-O(1)#4	89.50(11)
K(2)-O(6)#9	2.709(3)	O(1)-Sn(1)-O(1)#4	180
K(2)-O(3)#4	2.794(3)	F(1)#4-Sn(1)-O(3)	89.41(10)
K(2)-O(2)#7	2.884(3)	F(1)-Sn(1)-O(3)	90.59(10)
K(2)-F(1)	3.061(3)	O(1)-Sn(1)-O(3)	92.89(10)
K(3)-O(4)	2.672(3)	O(1)#4-Sn(1)-O(3)	87.11(10)
K(3)-O(5)#11	2.805(3)	F(1)#4-Sn(1)-O(3)#4	90.59(10)
K(3)-O(6)#9	2.807(3)	F(1)-Sn(1)-O(3)#4	89.41(10)
K(3)-F(1)#11	2.847(3)	O(1)-Sn(1)-O(3)#4	87.11(10)
K(3)-O(1)	2.895(3)	O(1)#4-Sn(1)-O(3)#4	92.89(10)
K(3)-O(6)	2.908(3)	O(3)-Sn(1)-O(3)#4	180
K(3)-O(3)#4	2.996(3)	O(7)-P(1)-O(6)#4	116.23(16)
K(3)-F(1)#4	3.061(3)	O(7)-P(1)-O(3)	110.34(15)
Sn(1)-F(1)#4	1.991(2)	O(6)#4-P(1)-O(3)	111.37(16)
Sn(1)-F(1)	1.991(2)	O(7)-P(1)-O(5)	109.45(14)
Sn(1)-O(1)	2.009(3)	O(6)#4-P(1)-O(5)	104.36(15)
Sn(1)-O(1)#4	2.009(3)	O(3)-P(1)-O(5)	104.22(13)
Sn(1)-O(3)	2.016(2)	O(2)-P(2)-O(4)#9	115.94(15)
Sn(1)-O(3)#4	2.016(2)	O(2)-P(2)-O(1)	112.41(17)
P(1)-O(7)	1.479(3)	O(4)#9-P(2)-O(1)	109.06(15)
P(1)-O(6)#4	1.486(3)	O(2)-P(2)-O(5)	108.82(15)
P(1)-O(3)	1.553(3)	O(4)#9-P(2)-O(5)	106.15(14)

Table S5. Selected bond lengths and angles for $K_6Sn(P_2O_7)_2F_2$.

Symmetry transformations used to generate equivalent atoms:						
#1 -x+2,-y+1,-z	#2 x,-y+3/2,z-1/2	#3 -x+2,y+1/2,-z+1/2				
#4 -x+1,-y+1,-z	#5 x+1,-y+3/2,z+1/2	#6 x+1,y,z				
#7 x-1,y,z	#8 -x+1,y-1/2,-z+1/2	#9 x,-y+3/2,z+1/2				
#10 -x+1,-y+1,-z+1	#11 -x+1,y+1/2,-z+1/2	#12 -x+2,y-1/2,-z+1/2				
#13 x-1,-y+3/2,z-1/2						

O(1)-P(2)-O(5)

103.55(14)

1.627(2)

P(1)-O(5)

uata	ouse.					
No.	Compounds	Space	Sn-P-O	Absorption edges	Band	Reference
		group	framework	wavelength(nm)	gap(eV)	
1	$(Sn_3O)(Sn_2O)(PO_4)_4$	$P\overline{1}$	3D	N/A	N/A	[9]
2	SnP ₂ O ₇	Ia3	3D	N/A	N/A	[10]
3	CaSn4(PO4)6	Pnnm	3D	N/A	N/A	[11]
4	BaSn(PO ₄) ₂	C2/m	2D	340	3.60 cal.	[12]
5	SrSn(PO ₄) ₂	C2/c	2D	330	3.76 cal.	[12]
6	$CuSn_2(PO_4)_3$	R3c	3D	N/A	N/A	[13]
7	KSnO(PO ₄)	$Pna2_1$	3D	225	5.5 exp.	[14]
8	KSn ₂ (PO ₄) ₃	R3	3D	N/A	N/A	[15]
9	$LiSn_2(PO_4)_3$	R3c	3D	N/A	N/A	[16]
10	LiSn ₂ (PO ₄) ₃	$P\overline{1}$	3D	N/A	N/A	[16]
11	NaSn ₂ (PO ₄) ₃	R3	3D	N/A	N/A	[17]
12	NaSn ₂ (PO ₄) ₃	R3c	3D	N/A	N/A	[18]
13	PbSn(PO ₄) ₂	$P2_{1}/c$	3D	N/A	N/A	[19]
14	RbSn ₂ (PO ₄) ₃	R3	3D	N/A	N/A	[20]
15	Sn(HPO ₄) ₂ (H ₂ O)	C2/c	1D	N/A	N/A	[21]
16	Sn(HPO ₄) ₂	C2/c	1D	N/A	N/A	[22]
17	(K _{0.5} Rb _{0.5})(SnO)(PO ₄)	$Pna2_1$	3D	N/A	N/A	[23]
18	Sn(HPO4)2(NH3)0.4(H2O)0.6	R3	3D	N/A	N/A	[24]
19	Ag ₂ SnFe(PO ₄) ₃	R3c	3D	N/A	N/A	[25]
20	CaSn(H ₂ PO ₂) ₆	R3	1D	N/A	N/A	[26]
21	CaSnFe(PO ₄) ₃	R3c	3D	N/A	N/A	[27]
22	CdSnFe(PO ₄) ₃	R3c	3D	N/A	N/A	[27]
23	K(Tio.25Sno.75)O(PO4)	$Pna2_1$	3D	N/A	N/A	[28]
24	K ₂ SnFe(PO ₄) ₃	P2 ₁ 3	3D	N/A	N/A	[29]
25	K ₂ YbSn(PO ₄) ₃	P213	3D	N/A	N/A	[29]
26	K ₂ AlSn(PO ₄) ₃	P2 ₁ 3	3D	N/A	N/A	[30]
27	Li(Ti _{2-x} Sn _x)(PO ₄) ₃	R3c	3D	N/A	N/A	[31]
28	Na1.168(Alo.148Sno.852)Sn(PO4)3	R3	3D	N/A	N/A	[32]
29	Na1.5Sn1.5Sb0.3(PO4)3	R3	3D	N/A	N/A	[25]
30	Na ₂ FeSn(PO ₄) ₃	R3c	3D	N/A	N/A	[27]
31	(NH4)2Sn(P4O13)	$P\overline{1}$	1D	N/A	N/A	[33]
32	SrCrSn(PO ₄) ₃	R3	2D	N/A	N/A	[34]
33	SrFeSn(PO ₄) ₃	R3	2D	N/A	N/A	[34]
34	(K0.5Na0.5)(Sn0.5Ti0.5)O(PO4)	$Pna2_1$	3D	N/A	N/A	[35]
35	(Na 0.5Rb0.5)(Sn0.5Ti0.5)O(PO4)	$Pna2_1$	3D	N/A	N/A	[35]
36	(K0.5Rb0.5)(Sn0.5Ti0.5)O(PO4)	$Pna2_1$	3D	N/A	N/A	[35]
37	Sn0.078Cu0.356H0.4Al0.924P0.924O4.408	P6/mcc	3D	N/A	N/A	[36]
38	K ₂ SnPO ₄ F ₃	$P2_{1}/c$	2D	192	6.10	This work
39	$K_6Sn(P_2O_7)_2F_2$	$P2_{1}/c$	0D	196	6.09	This work

Table S6. The inorganic compounds of tin(IV)-containing phosphates in the ICSD database.

N/A = not reported or not available

No.	Compounds	Space	Sn-O/F	Groups of tin	Ratio of	Reference
		group	framework		Sn/F	
1	Sn(SnOF5)	C2/m	3D	$\left[Sn_2O_4F_6\right]/\left[SnF_4\right]$	0.4	[37]
2	Sn ₂ (SnOF ₂) ₂	C2/m	1D	$\left[SnO_2F_2\right]/\left[SnOF_2\right]$	1	[38]
3	Sn ₄ OF ₆	P212121	3D	$[SnOF_3] \ / \ [SnOF_2] \ /$	0.67	[39]
				[SnF4]		
4	SnPO ₃ F	$P2_{1}/c$	2D	[SnO ₃]	1	[40]
5	$(Sn_6F_{10})(NbOF_5)$	C2/c	3D	$\left[Sn_{2}F_{6}\right]/\left[SnF_{3}\right]$	1.2	[41]
6	Sn(FSO ₃) ₂	$P2_{1}/c$	1D	[SnO4]	1	[42]
7	$SnB_2O_3F_2$	P31m	1D	[SnO ₃]	0.5	[43]
8	Sn ₃ (PO ₄)F ₃	R3	3D	$[SnO_2F_2]$	1	[44]
9	KSnSO ₄ F	$P\overline{1}$	1D	[SnO ₃ F]	1	[45]
10	$Na4Sn4(C_2O_4)_3F_6$	$P\overline{1}$	1D	$\left[SnO_{3}F\right]/\left[SnO_{2}F_{2}\right]$	0.67	[46]
11	(NaF3)(SnSi3O9)	C2/m	3D	[SnO ₆]	0.33	[47]
12	$(NH_4)_2Sn_2F_4(NO_3)_2$	<i>C</i> 2	0D	$[Sn_2F_4]$	0.5	[48]
13	Na7(SO4)3(SnF3)	$P6_3mc$	0D	[SnF ₃]	0.33	[49]
14	Sn1.24Ti1.94O3.66(OH)1.5F1.42	$Fd\overline{3}m$	3D	[Sn (O / F) ₂]	1	[50]
15	$(NH_4)Sn(C_2O_4)F$	$P2_{1}/c$	0D	[SnO ₂ F]	1	[51]
16	(NH ₄)SnF(HPO ₄)	Pnma	1D	[SnO ₂ F]	1	[52]
17	(NH4)SnF(SO4)	$P2_{1}/c$	2D	[SnO ₃ F]	1	[53]
18	$Cs_3(Sn_3F_6)_2H(NO_3)_4$	$P\overline{1}$	0D	$[Sn_3F_6]$	0.5	[54]
19	NaSnF(HPO ₄)	Pnma	1D	[SnO ₂ F]	1	[52]
20	(CH3)3Sn((CH3)2SO)2(FSO2)2N	$P\overline{1}$	0D	[SnOC ₃]	0.5	[55]
21	$K_2SnPO_4F_3$	$P2_{1}/c$	2D	[SnO ₃ F ₃]	0.33	This work
22	$K_6Sn(P_2O_7)_2F_2$	$P2_{1}/c$	0D	[SnO ₄ F ₂]	0.5	This work

 Table S7. The tin-oxygen-fluorine containing anhydrous inorganic compounds in the ICSD database.

Fig. S1. The coordination of Sn and K atoms in $K_2SnPO_4F_3$.

Fig. S2. The coordination of the K atoms in $K_6Sn(P_2O_7)_2F_2$.

Fig. S4. The UV-Vis-NIR diffuse reflectance spectrum of $K_2SnPO_4F_3$.

Fig. S5. The UV-Vis-NIR diffuse reflectance spectrum of $K_6Sn(P_2O_7)_2F_2$.

Fig. S7. (a) The band structure of $K_2SnPO_4F_3$; (b) density of states (DOS) of $K_2SnPO_4F_3$.

Fig. S8. The calculated and experimental powder X-ray diffraction patterns for $K_2SnPO_4F_3$ and $K_6Sn(P_2O_7)_2F_2$.

Reference

- [1] SAINT, Version 7.60A, Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2008.
- [2] G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.
- [3] J. Tauc, Mater. Res. Bull., 1970, 5, 721.
- [4] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567.
- [5] A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, *Phys. Rev. B*, 1990, 41, 1227.
- [6] J. Lin, A. Qteish, M. Payne and V. Heine, Phys. Rev. B, 1993, 47, 4174.
- [7] M. H. Lee, Ph.D. Thesis, The University of Cambridge, Cambridge, U.K., 1996.
- [8] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [9] X. J. Yuan, Y. Z. Li, Y. Xu, X. Z. You and R. J. Linhardt, *Eur. J. Inorg. Chem.*, 2007, 6, 858.
- [10] C. H. Huang, O. Knop, D. A. Othen, F. W. D. Woodhams and R. A. Howie, *Can. J. Chem.*, 1975, **53**, 79.
- [11] D. Zhao, F. F. Li and A. Y. Zhang, Z. Kristallogr. NCS, 2010, 225, 627.
- [12] D. Zhao, H. Zhang, Z. Xie, W. L. Zhang, S. L. Yang and W. D. Cheng, *Dalton Trans.*, 2009, 5310.
- [13] A. Serghini, R. Brochu, R. Olazcuaga and P. Gravereau, Mater. Lett., 1995, 22, 149.
- [14] M. L. F. Phillips, W. T. A. Harrison and G. D. Stucky, Inorg. Chem., 1990, 29, 3245.
- [15] H. J. Zhang, Acta Crystallogr. E, 2011, 67, 51.
- [16] E. Morin, J. Angenault, J. C. Couturier, M. Quarton, H. He and J. Klinowski, *Eur. J. Solid State Inorg. Chem.*, 1997, 34, 947.
- [17] J. Alamo and J. L. Rodrigo, Mater. Res. Bull., 1992, 27, 1091.
- [18] S. Y. Mao, J. F. Deng, M. R. Li, J. X. Mi, H. H. Chen and J. T. Zhao, Z. Kristallogr. NCS, 2004, 219, 205.
- [19]E. Morin1, G. Wallez, S. Jaulmes, J. C. Couturier and M. Quarton, J. Solid State Chem., 1998, 137, 283.
- [20] D. Zhao, F. F. Li, S. Qiu, J. L. Jiao and J. R. Ren, Acta Crystallogr. E, 2011, 67, 32.
- [21]S. Bruque, M. A. G. Aranda, E. R. Losilla, P. O. Pastor and P. M. Torres, *Inorg. Chem.*, 1995, 34, 893.
- [22] R. Herak, B. Prelesnik, M. Curic and P. Vasic, J. Chem. Soc., Dalton Trans., 1978, 566.
- [23] S. J. Crennell, A. K. Cheetham, J. A. Kadukb and R. H. Jarma, J. Mater. Chem., 1992, 2, 785.
- [24]L. Roces, S. A. Khainakov, J. R. Garcia, P. Pertierra, M. A. Salvado and S. G. Granda, *Inorg. Chem. Commun.*, 2002, 5, 685.
- [25] A. Aatiq, B. Haggouch and R. Tigha, Global J. Phys. Chem., 2011, 2, 129.
- [26] T. Gieschen and H. Reuter, Acta Crystallogr. E, 2013, 69, 44.
- [27] A. Aatiq, Powder Diffr., 2004, 19, 272.
- [28]O. D. Krotova, N. I. Sorokina, I. A. Verin, V. I. Voronkova, V. K. Yanovskii and V. I. Simonov, *Crystallogr. Rep.*, 2003, 48, 925.

- [29] A. Aatiq, B. Haggouch, R. Bakri, Y. Lakhdar and I. Saadoune, *Powder Diffr.*, 2006, 21, 214.
- [30] H. Y. Li and D. Zhao, Acta Crystallogr. E, 2011, 67, 56.
- [31] N. Bounar, A. Benabbas, F. Bourenmad, P. Ropa and J. C. Carru, *Physica B*, 2012, 407, 403.
- [32] P. M. Manso, M. A. G. Aranda, S. Bruque, J. Sanz and E. R. Losilla, *Solid State Ionics*, 2005, **176**, 1613.
- [33]L. S. Ivashkevich, A. F. Selevich, A. S. Lyakhov and A. I. Lesnikovich, *Russ. J. Inorg. Chem.*, 2007, **52**, 1274.
- [34]G. Buvaneswari, K. V. G. Kutty and U. V. Varadaraju, *Mater. Res. Bull.*, 2004, 39, 475.
- [35]S. J. Crennell, A. K. Cheetham, J. A. Kaduk and R. H. Jarman, J. Mater. Chem., 1992, 2, 785.
- [36] W. R. Flavell, D. G. Nicholson, M. H. Nilsen and K. Stahl, J. Mater. Chem., 2001, 11, 620.
- [37] J. H. Chang and J. Köhler, Z. Kristallogr. NCS, 1999, 214, 147.
- [38] B. Darriet and J. Galy, Acta Crystallogr., 1977, 33, 1489.
- [39] I. Abrahams, S. J. Clark, J. D. Donaldson, Z. I. Khan and J. T. Southern, J. Chem. Soc., Dalton Trans., 1994, 2581.
- [40] A. F. Berndt, Acta Cryst., 1974, 30, 529.
- [41]I. E. Rakov, Y. E. Gorbunova, Y. V. Kokunov and Y. N. Mikhailov, *Koord. Khim.*, 1993, **19**, 759.
- [42] D. C. Adams, T. Birchall, R. Faggiani, R. J. Gillespie and J. E. Vekris, *Can. J. Chem.*, 1991, **69**, 2122.
- [43] M. Luo, F. Liang, Y. X. Song, D. Zhao, N. Ye and Z. S. Lin, J. Am. Chem. Soc., 2018, 140, 6814.
- [44] A. F. Berndt, J. Dent. Res., 1972, 51, 53.
- [45] Y. V. Kokunov, D. G. Detkov, Y. E. Gorbunova, M. M. Erahova and Y. N. Mikhailov, *Zh. Neorg. Khim.*, 2001, 46, 266.
- [46] T. O. Salami, P. Y. Zavalij and S. R. J. Oliver, Acta Crystallogr. E, 2001, 57, 111.
- [47] C. H. Liao, P. C. Chang, H. M. Kao and K. H. Lii, Inorg. Chem., 2005, 44, 9335.
- [48] Y. V. Kokunov, D. G. Detkov, Y. E. Gorbunova, M. M. Ershova, Y. N. Mikhailov and Y. A. Buslaev, *Dokl. Akad. Nauk*, 2001, **378**, 347.
- [49] Y. E. Gorbunova, D. G. Detkov and Y. V. Kokunov, Zh. Neorg. Khim., 2004, 49, 1459.
- [50] Y. H. Xie, S. Yin, H. Yamane, T. Hashimoto, H. Machida and T. Sato, *Chem. Mater.*, 2008, **20**, 4931.
- [51] T. O. Salami, K. Marouchkin, P. Y. Zavalij and S. R. J. Oliver, *Chem. Mater.*, 2002, 14, 4851.
- [52] Y. V. Kokunov, D. G. Detkov, Y. E. Gorbunova, M. M. Erahova and Y. N. Mikhailov, *Zh. Neorg. Khim.*, 2002, 47, 931.
- [53] Y. V. Kokunov, D. G. Detkov, Y. E. Gorbunova, M. M. Erahova and Y. N. Mikhailov, *Zh. Neorg. Khim.*, 2001, 46, 266.
- [54] D. G. Detkov, Y. E. Gorbunova, Y. N. Mikhailov and Y. V. Kokunov, Zh. Neorg.

Khim., 2003, 48, 908.

[55]O. Hiemisch, D. Henschel, A. Blaschette and P. G. Jones, Z. Anorg. Allg. Chem., 1999, 625, 1391.