- Fig. S1-S3. IR spectra of rhodium complexes $HRh(CO){P(NC_4H_4)_3}_3$, $HRh(CO){PhP(NC_4H_4)_2}_3$ and $HRh(CO){Ph_2P(NC_4H_4)}_3$.
- ➢ Fig. S4-S6. ¹H NMR, ³¹P NMR and IR-spectra of post-reaction (HRh(CO){P(NC₄H₄)₃}₃
 + (R)-BINAP + CO + H₂ + Vinyl acetate).
- Fig. S7. ³¹P NMR spectra of post-reaction (HRh(CO){PhP(NC4H4)₂}₃ + (R)-BINAP + CO + H₂ + Vinyl acetate).
- Fig. S8. ³¹P NMR spectra of post-reaction (HRh(CO){Ph₂P(NC₄H₄)}₃ + (R)-BINAP + CO + H₂ + Vinyl acetate).
- Fig. S9-S11. ¹H NMR, ³¹P NMR and IR-spectra of post-reaction (Rh(acac)(CO)₂ + (R)-BINAP + P(NC₄H₄)₃ + CO + H₂ + benzene-d).
- Fig. S12-S14. ¹H NMR, ³¹P NMR and IR-spectra of post-reaction (HRh(CO){P(NC₄H₄)₃}₃ + (R)-BINAP + CO + H₂ + benzene-d).
- Fig. S15-S17. ¹H NMR and ³¹P NMR spectra of post-reaction (HRh(CO){P(NC₄H₄)₃} + (R,R)Ph-PBE + CO + H₂ + Vinyl acetate).
- ➢ Fig. S18-S21. ³¹P NMR spectra at different temperature of post-reaction (HRh(CO){P(NC4H4)3} + (R,R)Ph-PBE + CO + H₂ + Vinyl acetate).
- Fig. S22-S23 ¹H NMR and ³¹P NMR spectra of post-reaction (HRh(CO){P(NC4H4)₃} + (R,R)Ph-PBE + CO + H₂ + benzene-d)
- ➢ Fig. S24-S27 ³¹P NMR spectra at different temperature of post-reaction (HRh(CO){P(NC₄H₄)₃}₃ + (R,R)Ph-PBE + CO + H₂ + benzene-d)
- Fig. S28-S29 ¹H NMR and ³¹P NMR spectra of post-reaction (HRh(CO){P(NC₄H₄)₃} + (R,R)Ph-PBE +Benzene-d. 25 °C for 40 min)
- Table S1. The effect of excess P(NC₄H₄)₃ ligand on hydroformylation of allyl acetate
- > Table S2. The effect of temperature on hydroformylation of vinyl acetate.

Fig. S1. IR- spectra (KBr) of HRh(CO){P(NC₄H₄)₃}₃

Reaction condition: $HRh(CO){P(NC_4H_4)_3}_3$ (3.4 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Vinyl acetate (0.7 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S5. ³¹P NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){**P**(**NC**₄**H**₄)₃}₃ + (**R**)-**BINAP** + **CO** + **H**₂ + **Vinyl acetate**).

Reaction condition: $HRh(CO){P(NC_4H_4)_3}_3$ (3.4 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Vinyl acetate (0.7 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S6. IR-spectra (KBr) of post-reaction (HRh(CO){ $P(NC_4H_4)_3$ } + (R)-BINAP + CO + H₂ + Vinyl acetate). Reaction condition: HRh(CO){ $P(NC_4H_4)_3$ } (3.4 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Vinyl acetate (0.7 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S7. ³¹P NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){**PhP**(**NC**₄**H**₄)₂}₃ + (**R**)-**BINAP** + **CO** + **H**₂ + **Vinyl acetate**).

Reaction condition: $HRh(CO){PhP(NC_4H_4)_2}_3$ (3.4 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Vinyl acetate (0.7 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S8. ³¹P NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){**Ph**₂**P**(**NC**₄**H**₄)}₃ + (**R**)-**BINAP** + **CO** + **H**₂ + **Vinyl acetate**).

Reaction condition: $HRh(CO){Ph_2P(NC_4H_4)}_3$ (2.15 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Vinyl acetate (0.7 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

8.50 8.52 8.52 8.58 1-8.50 -8.51 -8.71 1925 1925 1925

Fig. S9. ¹H NMR (C₆D₆) spectra of post-reaction (**Rh**(acac)(CO)₂ + (**R**)-**BINAP** + **P**(NC₄H₄)₃ + CO + H₂ + benzene-d).

Reaction condition: Rh(acac)(CO)₂ (5 X 10^{-5} mol), with 1.5-fold excess of (R)-BINAP, and 1.5-fold excess of P(NC₄H₄)₃, Benzene-d (1 mL), P(H₂/CO =1) = 10 bar, 80 °C and t= 40 min.

Fig. S10. ³¹P NMR (C_6D_6) spectra of post-reaction (**Rh**(acac)(**CO**)₂ + (**R**)-**BINAP** + **P**(**NC**₄**H**₄)₃ $+ CO + H_2 + benzene-d).$ Reaction condition: Rh(acac)(CO)₂ (5 X 10⁻⁵ mol), with 1.5-fold excess of (R)-BINAP, and 1.5-

fold excess of $P(NC_4H_4)_3$, Benzene-d (1 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S11. IR-spectra (KBr) of post-reaction $(Rh(acac)(CO)_2 + (R)-BINAP + P(NC_4H_4)_3 + CO)$ + H_2 + benzene-d). Reaction condition: Rh(acac)(CO)₂ (5 X 10⁻⁵ mol), with 1.5-fold excess of (R)-BINAP, and 1.5-

fold excess of $P(NC_4H_4)_3$, Benzene-d (1 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S12. ¹H NMR (C₆D₆) spectra of post-reaction (HRh(CO){ $P(NC_4H_4)_3$ } + (R)-BINAP + CO + H₂ + benzene-d).

Reaction condition: $HRh(CO){P(NC_4H_4)_3}_3$ (5 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Benzene-d (1 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

+ H₂ + benzene-d).

Reaction condition: $HRh(CO){P(NC_4H_4)_3}_3$ (5 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP, Benzene-d (1 mL), $P(H_2/CO = 1) = 10$ bar, 80 °C and t= 40 min.

Fig. S14. IR-spectra (KBr) of post-reaction (HRh(CO){P(NC4H4)3} + (R)-BINAP + CO + H2 +
benzene-d).Reaction condition: HRh(CO){P(NC4H4)3}3 (5 X 10⁻⁵ mol), with 3-fold excess of (R)-BINAP,
Benzene-d (1 mL), P(H2/CO =1) = 10 bar, 80 °C and t= 40 min.

Fig. S15 ¹H NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){ $P(NC_4H_4)_3$ } + (**R**,**R**)**Ph-PBE** + **CO** + **H**₂ + **Vinyl acetate**).

Fig. S16 ³¹P NMR (C₆D₆) spectra of post-reaction (HRh(CO){ $P(NC_4H_4)_3$ } + (R,R)Ph-PBE + CO + H₂ + Vinyl acetate).

Fig. S17 ³¹P NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){**P**(**NC**₄**H**₄)₃}₃ + (**R**,**R**)**Ph-PBE** + **CO** + **H**₂ + **Vinyl acetate**).

ig. S18 ³¹P NMR (toluene-d8) (26 ^oC) spectra of post-reaction (**HRh**(**CO**){**P**(**NC**₄**H**₄)₃}₃ (**R**,**R**)**Ph-PBE** + **CO** + **H**₂ + **Vinyl acetate**).

Fig. S19 ³¹P NMR (toluene-d8) (0 °C) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE + CO + H_2 + Vinyl acetate$).

Fig. S20 ³¹P NMR (toluene-d8) (-20 °C) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE + CO + H_2 + Vinyl acetate$).

Fig. S22 ¹H NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){ $P(NC_4H_4)_3$ } + (**R**,**R**)**Ph-PBE** + **CO** + **H**₂ + **benzene-d**)

Fig. S23 ³¹P NMR (C₆D₆) spectra of post-reaction (**HRh**(**CO**){ $P(NC_4H_4)_3$ } + (**R**,**R**)**Ph-PBE** + **CO** + **H**₂ + **benzene-d**).

Fig. S24 ³¹P NMR (toluene-d8) (26 °C) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE + CO + H_2 + benzene-d$).

Fig. S26 ³¹P NMR (toluene-d8) (-20 °C) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE + CO + H_2 + benzene-d$).

Fig. S27 ³¹P NMR (toluene-d8) (-40 °C) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE + CO + H_2 + benzene-d$).

Fig. S28. ¹H NMR (C_6D_6) spectra of post-reaction (**HRh**(**CO**){**P**(**NC**₄**H**₄)₃} + (**R**,**R**)**Ph-PBE** +**Benzene-d. 25** °**C** for 40 min).

Fig. S29. ³¹P NMR (C₆D₆) spectra of post-reaction ($HRh(CO){P(NC_4H_4)_3} + (R,R)Ph-PBE +Benzene-d. 25 °C for 40 min$).

Entry	[L]/[Rh]	t, min.	Conv. %	1%	2%	3%	1/2 ratio	TOF ^b , mol mol ⁻¹ h ⁻¹
1	2	20	100	65.5	32.8	1.7	2	2383
2	4		100	67.2	29.3	3.5	2.3	2339.4
3	6	30	100	68.7	28.1	3.2	2.5	1548.8
4	8		100	68.5	27	4.5	2.5	1528
5	10		100	67.9	26.3	5.8	2.6	1507.2

Table S1. The effect of the [L]/[Rh] ratio on the hydroformylation of allyl acetate using catalyst **I** with the $P(NC_4H_4)_3$ ligand under solventless conditions^a

^a Reaction condition: allyl acetate (1 mL), [substrate]/[Rh]=800, P = 20 bar (H₂/CO =1), T= 80

°C, L= P(NC₄H₄)₃, ^b TOF= (mole of products (1+2))/(mole of catalyst x reaction time).

Table S2. The effect of temperature on Hydroformylation of vinyl acetate using catalyst **I** under solventless conditions^a

Entry	Catalyst	T, ⁰C	t.	Conv. %	1%	2%	3%	TOF ^c , mol mol ⁻¹ h ⁻¹
3	Ι	60	40 min	100	84.5	1.7	2.7	1024
4		50		100	89	1.5	1.5	1079
5		30	4 h	100	89.5	1	1	179

^a Reaction condition: vinyl acetate (1 ml), [substrate]/[Rh]=800, P = 20 bar (H₂/CO =1). and ^c

TOF= (mole of product 1)/(mole of catalyst x reaction time).

Products of allyl acetate hydroformylation:

4-acetoxybutanal (1): MS: 130 (M+); 102(1), 87(29.8), 86(3.2), 70(12.8), 69(6.4), 61(36.2), 58(2.1), 57(4.3), 43(100), 42(25.5), 39(8.5), 31(6.4), 29(14.9).

3-acetoxy-2-methyl propanal (2): MS: 130 (M+); 87(8.5), 70(2.1), 69(1), 61(50), 58(4.3), 57(2.1), 43(100), 42(37.2), 39(6.4), 31(2.1), 29(7.5).

Propyl acetate (3): MS: 130 (M+); 85(2.1), 72(4.3), 61(10.9), 58(50), 57(34.8), 43(100), 42(19.6), 41(54.3), 40(10.9), 39(47.8), 31(3.3), 29(18.5).

Products of butyl acrylate hydroformylation:

2-Methyl-3-oxopropionic acid butyl ester (1)

MS: 158 (M+); 158(4.8), 130(3.5), 102(14.3), 85(63.5), 84(25.4), 74(99.2), 57(54), 56(100), 43(11.1), 41(55.6), 31(14.3), 29(67.5).

4-Oxo-butyric acid butyl ester (2)

MS: 158 (M+); 130(1.6), 103(4), 86(6.4). 85(100), 75/9, 74(30.2), 57(26.2), 56(36.5), 41(20.6), 29(35.7).

Propanoic acid butyl ester (3)

MS: 130(M+); 101(1.8), 87(10.7), 75(50), 57(100), 56(57.1), 41(27.9), 31(3.6), 29(46.4).

Products of methyl acrylate hydroformylation:

2-Methyl-3-oxopropionic acid methyl ester (1)

MS: 116 (M+); 116(3.6), 88(75.5), 85(43.2), 59(36), 57(63), 56(71.9), 55(41.4), 45(18), 29(100).

4-Oxo-butyric acid methyl ester (2)

MS: 116 (M+); 88(77), 87(11.1), 85(69.4), 59(36.1) 57(88.9), 56(27.8), 55(33.3), 45(19.4), 29(100).

Products of 2,3-dihydrofuran hydroformylation:

2-formyltetrahydrofuran (1); ¹H NMR (500 Hz, CDCl₃): δ(CHO) 9.42 ppm (d, 1.2 Hz); ¹³C NMR (500 Hz, CDCl₃): 201.8, 82.4, 68.8, 26.9, 25.2

MS (EI) (m/z (relat. int. %)): 72 (6.4), 71(100), 69 (2.6), 55 (1.7), 53 (1.7), 44(6), 43 (93.6), 42 (16), 41(72.3), 39 (23.4), 31 (2.6), 29 (33), 27 (40.4).

3-formyltetrahydrofuran (2); ¹H NMR (500 Hz, CDCl₃): δ(CHO) 9.19 ppm (d, 1.5 Hz); ¹³C NMR (500 Hz, CDCl₃): 200, 67.4, 66.9, 51, 26.1

MS (EI) (m/z (relat. int. %)):100 (4.3), 99 (10.6), 82 (13.2), 72 (38.3), 71 (35.1), 70 (25.5), 69 (46.8), 57 (45.7), 55 (8.5), 54 (12.8), 53 (6.4), 44 (23), 43 (27.7), 42 (78.7), 41 (100), 39 (46.8), 31 (19.2), 29 (44.7), 27 (31.5).