Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Table of contents

Characterisation of ligands	
Characterisation of metal complexes	.7-14
C-S cross coupling reactions	15-44
Tables	45-48
DFT Calculation	49

Fig. S2 ¹³C NMR spectrum of L^1 in CDCl₃

Fig. S6. Neat FT-IR spectrum of L²

Fig. S8 13 C NMR spectrum of L³ in CDCl₃

Fig. S10 Neat FT-IR spectrum of $\mathbf{L^3}$

Fig. S11 ¹H NMR spectrum of complex **1** in DMSO- d_6

Fig. S12 ¹³ C NMR spectrum of complex **1** in DMSO- d_6

Fig. S13. Neat FT-IR spectrum of complex 1

Fig. S14 ¹H NMR spectrum of complex **2** in DMSO- d_6

Fig. S16. Neat FT-IR spectrum of complex 2

Fig. S17 ¹H NMR spectrum of complex **3** in DMSO- d_6

Fig. S18 ¹³ C NMR spectrum of complex **3** in DMSO- d_6

Fig.S19. Neat FT-IR spectrum of complex 3

Fig. S22. Neat FT-IR spectrum of complex 4

Fig. S23 ^1H NMR spectrum of complex 5 in CD_3CN

Fig. S24 $^{\rm 13}$ C NMR spectrum of complex ${\bf 5}$ in CD_3CN

1. Compound characterisation data (1a):

(4-nitrophenyl) (phenyl) sulfane : Chemical Formula: C12H9NO₂S; yellow Colour solid; Yield: 110 mg (95 %); M. P: 86-90 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (d, *J*=9.0 Hz, 2H, ArC*H*), 7.49 (m, 5H, ArC*H*) 7.17 (d, *J*=9.1 Hz, 2H, ArC*H*). ¹³C NMR (CDCl₃, 100 MHz): 148.72 (ArC), 144.86 (ArC), 135.06 (ArC), 130.63 (ArC), 129.98 (ArC), 127.13 (ArC), 126.48 (ArC), 124.26 (ArC). FT-IR (neat, \bar{v}): 1577(s), 1507(s), 1327(s), 1177(m), 1076(s), 1012(m), 840(s), 739(s), 685(s), 507(s).

2. Compound characterisation data (2a):

(3-nitrophenyl) (phenyl)sulfane: Chemical Formula: C12H9O₂NS; yellow Colour solid; Yield: 103 mg (83 %); M. P: 82-85 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J*= 8.2 Hz, 1H, ArC*H*), 7.44-7.58 (m, 5H, ArC*H*), 7.33 (t, *J*= 7.7 Hz, 1H, ArC*H*), 7.20 (t, *J*= 7.7 Hz, 1H, ArC*H*), 6.86 (d, *J*= 8.2 Hz, 1H, ArC*H*). ¹³C NMR (CDCl₃, 100 MHz): 145.00 (ArC), 139.48 (ArC), 135.91 (ArC), 133.61 (ArC), 131.17 (ArC), 130.79 (ArC), 130.16 (ArC), 128.48 (ArC), 125.84 (ArC), 124.82(ArC). FT-IR (neat, \bar{v}): 1583(s), 1510(s), 1447(m), 1333(s), 1299(m), 1165(w), 1104(s), 1043(s), 906(s), 851(m), 724(s), 485(s).

3. Compound characterisation data (3a):

4-(phenylthio)benzonitrile : Chemical Formula: C13H9NS; Colourless solid; Yield: 135 mg (82 %); **M. P**: 80-83 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.60 (d, *J*=8.7 Hz, 1H, ArC*H*), 7.48-7.50 (m, 3H, ArC*H*), 7.38-7.44(m, 3H, ArC*H*), 7.15-7.20(m,2H, ArC*H*). ¹³**C NMR (CDCl₃, 100 MHz):** 144.96 (ArC), 135.79 (ArC), 135.56 (ArC), 132.65 (ArC), 130.06 (ArC), 129.62 (ArC), 127.57 (ArC), 118.66 (ArC), 109.05 (ArC). **FT-IR (neat, \bar{v}):** 2217, 1581(s), 1470(s), 1389(m), 1180(m), 1078(s), 1006(m), 814(s), 740(m), 583(m), 537(m), 496(s).

4. Compound characterisation data(4a):

1-(4-Phenylsulfanylphenyl) ethanone: Chemical Formula: C14H12OS; Colourless solid; Yield: 95 mg (79 %); **M. P**: 69-72 ° C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.82 (d, *J*= 8.4 Hz, 2H, ArC*H*), 7.50 (m, 2H, ArC*H*), 7.40 (m, 3H, ArC*H*), 7.21 (d, *J*= 8.8 Hz, 2H, ArC*H*), 2.55 (s, 3H, Ar-CO-C*H*₃). ¹³**C NMR** (100MHz, CDCl₃): δ 197.17 (Ar-*CO*), 144.89 (ArC), 134.30 (ArC), 133.91 (ArC), 132.06 (ArC), 129.70 (ArC), 128.87 (ArC), 127.45 (ArC), 26.15 (Ar-CO-CH₃). **FT-IR (neat, \bar{v}):** 3337(w), 1678(s), 1585(s), 1474(w), 1398(w), 1358(m), 1264(s), 1090(m), 1016(s), 957(m), 821(m), 748(m), 692(m), 587(w).

5. Compound characterisation data (5a):

(4-chlorophenyl) (4-nitrophenyl) sulfane: Chemical Formula: C12H8NO₂SCl; Colourless solid; Yield: 120 mg (90 %); M. P: 90-93 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, J=6.8 Hz, 2H, ArCH), 7.41-7.48 (m, 4H, ArCH), 7.18 (d, J=8.8 Hz, 2H, ArCH). ¹³C NMR (CDCl₃, 100 MHz): 147.65 (ArC), 144.94 (ArC), 136.08 (ArC), 135.81 (ArC), 130.49 (ArC), 128.85 (ArC), 126.61 (ArC), 123.29 (ArC). FT-IR (neat, \bar{v}): 1576(s), 1501(s), 1388(m), 1327(s), 1079(s), 1007(m), 834(m), 812(m), 737(s), 677(w), 533(w).

6. Compound characterisation data (6a):

(4-chlorophenyl) (3-nitrophenyl) sulfane: Chemical Formula: $C_{12}H_8NO_2SCI$; yellow colour solid; Yield: 139 mg (80 %); M. P: 93-95 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (d, J = 8.2 Hz, & 1.5 Hz, 1H, ArCH), 7.45-7.53 (m, 2H, ArCH), 7.46(m, 2H, ArCH), 7.36 (dd, J = 8.3 Hz & 1.4Hz, 1H, ArCH), 7.25 (dd, J = 8.3 Hz & 1.2 Hz, 1H, ArCH), 6.86 (dd, J = 8.2 Hz & 1.2 Hz, 1H, ArCH). ¹³C NMR (CDCl₃, 100 MHz): 144.86 (ArC), 138.56 (ArC), 137.27 (ArC), 136.36(ArC), 133.76 (ArC), 130.27 (ArC), 129.79 (ArC), 127.78 (ArC), 125.85 (ArC), 125.54 (ArC). FT-IR (neat, \bar{v}): 1570(s), 1499(s), 1330(m), 1295(s), 1085(s), 815(m), 727(s), 490(m).

7. Compound characterisation data (7a):

4-((4-chlorophenyl) thio)benzonitrile: Chemical Formula: C13H8NSCl; Colourless solid; Yield: 158 mg (80 %); **M. P**: 88-92 ° C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.50 (m, 6H, ArC*H*), 7.15 (d, *J*=8.7 Hz, 2H, ArC*H*). ¹³**C NMR (CDCl₃, 100 MHz):** 145.66 (ArC), 134.13 (ArC), 132.19 (ArC), 129.96 (ArC), 129.34 (ArC), 118.59 (ArC), 108.57 (ArC). **FT-IR (neat,** \bar{v}): 2217, 1582(s), 1471(s), 1389(m), 1327(s), 1079(s), 1008(m), 815(s), 737(s), 539(m), 485(s).

8. Compound characterisation data (8a):

(3-methoxyphenyl) (phenyl)sulfane: Chemical Formula: $C_{13}H_{12}OS$; Colourless liquid; Yield: 80 mg (65%). M. P: 95-100 °C.¹H NMR (400 MHz, CDCl₃): δ = 7.18-7.36 (m, 6H, ArC*H*), 6.76-6.91 (m, 3H, ArC*H*), 3.71 (s, 3H, Ar-OC*H*₃). ¹³C NMR (CDCl₃, 100 MHz): 160.02 (ArC), 137.25 (ArC), 135.26 (ArC), 131.44 (ArC), 129.97 (ArC), 129.25 (ArC), 127.28 (ArC), 122.96 (ArC), 115.90 (ArC), 112.80 (ArC), 55.29 (Ar-OCH₃). FT-IR (neat, \bar{v}): 2922(m), 1580(s), 1470(s), 1283(m), 1236(s), 1179(m), 1035(s), 966(m), 852(s), 740(s), 685(s), 560(m), 502(s). 9. Compound characterisation data (9a):

(4-nitrophenyl) (p-tolyl) sulfane: Chemical Formula: $C_{13}H_{11}NO_2S$; yellow colour liquid; Yield: 100 mg (81 %). M. P: 85-90 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J*= 9.1 Hz, 2H, ArC*H*), 7.49-7.29 (m, 2H, ArC*H*), 7.27-7.11 (m, 2H, ArC*H*), 7.09-6.97 (m, 2H, ArC*H*), 2.34 (s, 3H, Ar-C*H*₃). ¹³C NMR (CDCl₃, 100 MHz): 148.60 (ArC), 143.81 (ArC), 138.45 (ArC), 134.05 (ArC), 131.59 (ArC), 129.59 (ArC), 128.85 (ArC), 125.46 (ArC), 123.87 (ArC), 122.85 (ArC), 20.31(ArCH₃). FT-IR (neat, \bar{v}): 2894(m), 2818(m), 2231(w), 1563(s), 1495(s), 1456(w), 1321(s), 1263(m), 1072(m), 1009(m), 895(s), 836(m).

10. Compound characterisation data (10a):

(4-methoxyphenyl) (4-nitrophenyl) sulfane: Chemical Formula: $C_{13}H_{11}NO_3S$; yellow colour solid; Yield: 92 mg (70 %); M. P: 82-85 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, J=9.1 Hz 2H), 7.57-7.44 (m, 2H), 6.98-7.17 (m, 4H, ArCH), 3.82 (s, 3H, Ar-O-CH₃).¹³C NMR (CDCl₃, 100 MHz): 159.73 (ArC), 147.98 (ArC), 145.17 (ArC), 136.87 (ArC), 132.01 (ArC), 126.15 (ArC), 123.86 (ArC), 121.68 (ArC), 117.64 (ArC), 111.80 (ArC), 55.98 (Ar-O-CH₃). FT-IR (neat, \bar{v}): 2892(s), 2822(m), 1561(s), 1493(s), 1452(s), 1317(s), 1259(s), 1230(m), 1061(s), 1005(s), 833(s).

11. Compound characterisation data (11a):

2-((4-methoxyphenyl) thio)-3-nitropyridine: Chemical Formula: C12H10N₂O₃S; yellow Colour solid; Yield: 96 mg (62 %); **M. P**: 138-140 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.84(dd, *J*= 6.8 Hz &1.3 Hz, 2H, ArC*H*), 7.51-7.57 (m, 3H, ArC*H*), 7.05 (m, 2H, ArC*H*), 4.18 (s, 3H, Ar-OC*H*₃). ¹³**C NMR (CDCl₃, 100 MHz):** 158.88 (ArC), 140.57 (ArC), 137.25 (ArC), 135.54 (ArC), 131.87 (ArC), 129.88 (ArC), 129.79 (ArC), 128.93 (ArC), 126.07, 60.41 (Ar OCH₃). **FT-IR (neat, \bar{v}):** 2920(s), 2854(m), 1706(s), 1580(m), 1458(s), 1338(s), 1286(s), 1175(s), 1120(m), 1071(m), 1025(m), 966(m), 852(s), 740(m), 696(s), 614(m), 547(m), 511(m).

12. Compound characterisation data (12a):

2-((4-nitrophenyl)thio)-1,3-benzothiazole: Chemical Formula: $C_{13}H_8N_2O_2S_2$; Colourless solid; Yield: 145 mg (86 %); **M. P**: 85-90 ° C. ¹**H NMR (400 MHz, CDCl₃):** δ = 8.09 (d, *J*=9.6 Hz, 2H, ArC*H*), 7.41-7.49 (m, 4H, ArC*H*), 7.17-7.20 (m, 2H, ArC*H*). ¹³**C NMR (CDCl₃, 100 MHz):** 162.78 (ArC), 153.41 (ArC), 140.09 (ArC), 136.22 (ArC), 132.68 (ArC), 131.14 (ArC), 126.69 (ArC), 125.57 (ArC), 124.65 (ArC), 122.84 (ArC), 121.20 (ArC). **FT-IR (neat, \bar{\sigma}):** 1570(s), 1502(s), 1388(m), 1329(s), 1080(s), 1009(m), 844(m), 814(m), 738(s), 504(w).

13. Compound characterisation data (13a):

anthracen-9-yl(4-fluorophenyl) sulfane: Chemical Formula: $C_{20}H_{13}FS$; light yellow solid; Yield: 80 mg (72 %); M. P: 152-155 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.61- 8.77 (m, 3H, ArC*H*), 8.06 (d, *J*= 9.7 Hz, 2H, ArC*H*), 7.50-7.57 (m, 4H, ArC*H*), 7.04 (d, *J*= 8.7 Hz, 2H, ArC*H*), 6.83 (m, 2H, ArC*H*). ¹³C NMR (CDCl₃, 100 MHz): 139.49 (ArC), 137.30 (ArC), 134.90 (ArC), 132.00 (ArC), 130.73 (ArC), 129.03 (ArC), 128.99 (ArC), 127.49 (ArC), 126.58 (ArC), 125.67 (ArC), 124.70 (ArC). FT-IR (neat, $\bar{\upsilon}$): 3019(m), 2893(s), 2838(m), 1706(s), 1655(m), 1542(w), 1453(s), 1371(s), 1292(s), 1204(s), 1157(s), 1071(s), 996(s), 939(s), 884(s), 8338(m). 14. Compound characterisation data (14a):

anthracen-9-yl(4-chlorophenyl) sulfane: Chemical Formula: $C_{20}H_{13}ClS$; light yellow solid; Yield: 92 mg (74 %); M. P: 158-162 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 8.61- 8.78 (m, 3H, ArC*H*), 8.07 (d, *J*= 8.0 Hz, 2H, ArC*H*), 7.50-7.58 (m, 4H, ArC*H*), 7.05 (d, *J*= 8.7 Hz, 2H, ArC*H*), 6.85 (d, *J*= 8.7 Hz, 2H, ArC*H*). ¹³C NMR (CDCl₃, 100 MHz): 137.35 (ArC), 137.30 (ArC), 137.17 (ArC), 134.90 (ArC), 132.00 (ArC), 130.73 (ArC), 130.53 (ArC), 129.03 (ArC), 127.66(ArC), 127.49 (ArC), 126.58(ArC), 125.67 (ArC), 124.59 (ArC). FT-IR (neat, $\bar{\upsilon}$): 3018(w), 2925(s), 2835(m), 1707(s), 1501(m), 1452(w), 1369(s), 1263(s), 1165(s), 1070(s), 1003(m), 939(s), 895(s).

15. Compound characterisation data (15a):

anthracen-9-yl(4-bromophenyl) sulfane: Chemical Formula: $C_{20}H_{13}BrS$; light yellow solid; Yield: 100 mg (70 %); M. P: 160-163 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.60$ - 8.76 (m, 3H, ArCH), 8.07 (d, J= 9.7 Hz, 2H, ArCH), 7.50-7.58 (m, 4H, ArCH), 7.06 (d, J= 8.7 Hz, 2H, ArCH), 6.84 (m, 2H, ArCH).¹³C NMR (CDCl₃, 100 MHz): 134.89, 131.99, 130.89, 130.53, 129.02, 128.98, 128.81, 127.48, 126.57, 125.67. FT-IR (neat, \bar{v}): 3019(m), 2893(s), 2333(m), 1655(m), 1606(w), 15401(w), 1453(s), 1371(s), 1292(s), 1204(s), 1157(s), 1071(s), 996(s), 939(s), 884(s), 838(m).

8.069 8.046 7.539 7.453 7.453 7.455 7.455 7.455 7.455 7.455 7.183 7.183

Fig. S27 ^1H NMR spectrum of compound 1a in CDCl_3

Fig. S29. Neat FT-IR spectrum of complex 1a

Fig. S35. Neat FT-IR spectrum of compound 3a

Fig. S37 ¹³C NMR spectrum of compound **4a** in CDCl₃

Fig. S38. Neat FT-IR spectrum of complex 4a

Fig. S39 ¹H NMR spectrum of compound **5a** in CDCl₃

Fig. S41. Neat FT-IR spectrum of compound 5a

Fig. S44. Neat FT-IR spectrum of compound 6a

Fig. S45 ¹H NMR spectrum of compound **7a** in CDCl₃

Fig. S47. Neat FT-IR spectrum of compound 7a

Fig. S50. Neat FT-IR spectrum of compound 8a

Fig. S51 ¹H NMR spectrum of compound **9a** in CDCl₃

Fig. S53. Neat FT-IR spectrum of compound 9a

040010000044	8
0,0,0,0,0,0,0,0,0,0,0,0,0,0	-
	4
	1

Fig. S59. Neat FT-IR spectrum of complex 11a

Fig. S62. Neat FT-IR spectrum of compound 12a

6.837 6.837 7.0508 7.1554 7.1554 7.1554 7.1554 6.859 6.859 6.837

Fig. S63 ¹H NMR spectrum of compound **13a** in $CDCl_3$

Fig. S65. Neat FT-IR spectrum of compound 13a

Fig. S68. Neat FT-IR spectrum of compound 14a

R 751 R 761 R

Fig. S71. Neat FT-IR spectrum of compound 15a

Fig. S72. Molecular packing of E14.

	L ¹	L ²	L ³	1
Empirical formula	$C_{18}H_{19}N_3Se$	$C_{18}H_{19}N_3S$	$C_{16}H_{15}N_3Se$	C ₁₉ H ₂₃ N ₃ SeC
				l ₂ OZn
Formula weight	356.33	309.44	328.28	524.67
Temperature (K)	293	293	293	293
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	Pna21	Pbca	$P2_1/c$	$P2_1/n$
a/Å	14.5860(4)	15.9130(6)	11.1018(3)	11.2044(3)
b/Å	14.6224(4)	7.5636(2)	7.9784(2)	13.7372(3)
c/Å	7.9425(3)	27.8228(9)	16.7114(5)	151908(4)
α/°	90	90	90	90
β/°	90	90	92.665(3)	104.509(3)
γ/°	90	90	90	90
Volume (Å ³)	1694.00(9)	3348.75(19)	1478.61(7)	2263.58(10)
Z	4	8	4	4
$ ho_{ m calc}/ m mg~mm^{-3}$	1.3971	1.2274	1.4746	1.5395
Absorption	2.217	0.193	3.373	2.943
coefficient (μ /mm ⁻				
1)				
F(000)	727.9	1313.4	662.3	1058.4
Reflections	5934	12082	4733	11099
collected				
R _{int}	0.0386	0.0443	0.0195	0.0451
GOF on F^2	1.028	1.053	1.260	1.038
$R_1 (I > 2\sigma(I))$	0.0490	0.0567	0.0617	0.0454
$wR_2(I \geq 2\sigma(I))$	0.0706	0.1242	0.2073	0.0740
R_1 values (all data)	0.0830	0.1003	0.0763	0.0839
R_2 values (all data)	0.0866	0.1514	0.2787	0.0932
2Θ range for data	5.84 to 58.18	5.86 to 57.9	7.98 to 141.6	5.94 to 57.96
collection/°				
Largest diff.	0.45/-0.35	0.34/-0.41	0.54/-1.47	0.74/-0.69
peak/hole / e Å ⁻³				
Independent		$3933 [R_{int} = 0.0443,$	$2633 [R_{int} =$	5224 [R _{int} =
reflections	$3271 [R_{int} = 0.0386,$	$R_{sigma} = 0.0504$]	0.0195, R _{sigma} =	0.0451,
	$K_{sigma} = 0.0698$		0.0260]	R _{sigma} =
				0.0727]
Flack parameter	0.32 (19)	-	-	-

Table S1. Structural parameters of compounds L^1 , L^2 , L^3 and 1.

 Table S2. Structural parameters of compounds 2-5.

	2	3	4	5
Empirical formula	$C_{36}H_{38}N_6Se_2Br_4Zn_2$	C ₁₉ H ₂₃ N ₃ SCl ₂ OZn	C ₁₉ H ₂₃ N ₃ SBr ₂ OZn	C ₃₈ H ₃₅ N ₆ Se ₂ Br4
				Zn ₂
Formula weight	1163.07	477.78	566.68	1185.07
Temperature (K)	293	293	293	293
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P2 ₁ /c	$P2_1/n$	$P2_1/n$	Pī
a/Å	10.0434(3)	11.1565(4)	11.3268(7)	7.5364(5)
b/Å	13.9747(4)	13.8114(5)	14.1364(8)	12.0785(11)
c/Å	15.7202(5)	15.0162(5)	15.1166(8)	13.2048(12)
α/°	90	90	90	70.474(8)
β/°	102.367(3)	104.487(3)	105.480(6)	77.488(7)
γ/°	90	90	90	76.996(7)
Volume (Å ³)	2155.19(11)	2240.23(13)	2332.7(2)	1090.67(17)
Z	2	4	4	1
$ ho_{ m calc}/ m mg~mm^{-3}$	1.7921	1.4165	1.6135	1.685
Absorption	6.542	1.442	4.581	6.459
coefficient (μ /mm ⁻				
1)				
F(000)	1127.3	987.2	1127.9	531.6
Reflections	10913	10646	10469	8943
collected				
R _{int}	0.0409	0.0395	0.0746	0.0368
GOF on F^2	1.040	1.045	0.904	1.015
$R_1(I > 2\sigma(I))$	0.0539	0.0468	0.0586	0.0467
$wR_2(I > 2\sigma(I))$	0.1069	0.0846	0.0912	0.0850
R_1 values (all data)	0.1067	0.0833	0.1345	0.0836
R_2 values (all data)	0.1316	0.1062	0.1278	0.1039
2Θ range for data	6 to 58.1	5.9 to 57.88	5.96 to 58.08	6 to 58.14
collection/°				
Largest diff.	1.23/-1.55	0.53/-0.55	1.41/-1.24	0.94/-0.98
peak/hole / e Å-3				
Independent	$4978 [R_{int} = 0.0409]$	$5218 [R_{int} = 0.0395,$	$5350 [R_{int} = 0.0746,$	4952 [R _{int} =
reflections	$R_{sigma} = 0.0668$]	$R_{sigma} = 0.0678$]	$R_{sigma} = 0.1468$]	0.0368, R _{sigma} =
				0.0711]
Flack parameter	0.32 (19)	-	-	-

Table S3. Structural parameters of E14

Empirical formula	$C_{20}H_{13}S_1Cl_1$
Formula weight	320.84
Temperature/K	293
Crystal system	triclinic
Space group	P-1
a/Å	5.5355(3)
b/Å	11.3824(10)
c/Å	13.4351(10)
α/°	107.316(7)
β/°	94.243(6)
γ/°	99.600(6)
Volume/Å ³	789.92(11)
Z	2
$\rho_{calc}g/cm^3$	1.3488
µ/mm ⁻¹	3.296
F(000)	334.2
Crystal size/mm ³	0.07 imes 0.07 imes 0.06
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2@ range for data collection/°	6.96 to 139.94
Index ranges	$-6 \le h \le 6, -13 \le k \le 13, -16 \le l \le 15$
Reflections collected	6327
Independent reflections	2976 [$R_{int} = 0.0142, R_{sigma} = 0.0175$]
Data/restraints/parameters	2976/0/199

Goodness-of-fit on F ²	1.042
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0370, wR_2 = 0.1055$
Final R indexes [all data]	$R_1 = 0.0445, wR_2 = 0.1133$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.26

Table S4: The absorption wavelength and the molar extinction coefficient of L^1 - L^3 and 1-5.

Compound	$\lambda_{(abs) max}(nm)$	€ (L.mol ⁻¹ .cm ⁻¹)
L ¹	310, 380	800, 500
L ²	300, 370	1600, 1300
L ³	310, 370	1040, 600
1	310, 380	1400, 840
2	310, 380	500, 320
3	300, 370	1400, 1160
4	300, 370	720, 560
5	310, 370	1600, 900

Entry	Catalyst	Solvent	Time (h)	Yield (%) ^b
1	ZnCl ₂	CH ₃ CN	24	nd ^c
2	ZnBr ₂	CH ₃ CN	24	nd ^c
3	ZnX ₂ .6H ₂ O	CH ₃ CN	24	nd ^c
4	ZnBr ₂ /NaO ^t Bu(2 eq)	CH ₃ CN	24	25
5	ZnX ₂ .6H ₂ O/NaO ^t Bu(2eq)	CH ₃ CN	24	trace

 Table S5. Screening effect of zinc sources on C-S cross coupling reactions^a

^aReaction condition: 1-bromo-4-nitro benzene (1 mmol), thiophenol (1 mmol), Lproline 80 °C. b Isolated yield, c Not detected.

Table S6. Effect of the amount of catalyst 1 on C-S cross coupling reactions^a

Entry	Zn catalyst 1 (mol %)	L- proline (mol%)	Solvent	Yield (%) ^b
1	10	10	CH ₃ CN	90
2	5	5	CH ₃ CN	65
3	2.5	2.5	CH ₃ CN	36

^aReaction condition: 1-bromo-4-nitro benzene (1 mmol), thiophenol (1 mmol), NaO'Bu (2 equiv.), 80 °C, 15 h. b Isolated yield.

DFT (B3LYP) Calculation

References

- Gaussian 16 Revision A 03 M I Frisch G W Trucks H R Schlegel G F Scuseria M A Rohh I R Cheeseman G Scalmani V Barone G A Petersson H Nakatsuii X Li M Caricato A V Marenich I Bloino B G Janesko R Gomperts B Mennucci H P Hratchian I V Ortiz A F Izmavlov I I Sonnenherg D Williams-Young, F Ding F Linparini F Egidi I Goings B Peng A Petrone, T Henderson D Ranasinghe V G Zakrzewski I Gao N Rega G Zheng W Liang M Hada M Fhara K Tovota R Fukuda I Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven K Throssell I A Montgomerv, Ir. I F Peralta F Ogliaro M I Bearnark I I Hevd F N Brothers K N Kudin V N Staroverov T A Keith R Kohavashi I Normand K Raghavachari A P Rendell I C Burant S S Ivengar I Tomasi M Cossi I M Millam M Klepe C Adamo R Cammi J W Ochterski R I Martin K Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2) GaussView, Version 6, R. Dennington, T. A. Keith, and J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.

1,3,4-methyl-1,2,3-triazolin-5-ylidene (I)

Sl. No	Occupancy	Bond orbital	Coefficients	Hybrids
1	0.99323	BD(1)N1-N2	(54.86%) 0.7407* N1	s(28.40%)p 2.52(71.52%)d
				0.00(0.08%)
			(45.14%) 0.6719* N2	s(25.05%)p 2.99(74.78%)d
				0.01(0.16%)
2	0.99210	BD(1)N1-C5	(64.59%) 0.8037* N1	s(38.01%)p 1.63(61.96%)d
				0.00(0.02%)
			(35.41%) 0.5951* C5	s(24.95%)p 3.00(74.91%)d
				0.01(0.14%)
3	0.99487	BD(1)N1-C7	(64.21%) 0.8013* N1	s(33.55%)p 1.98(66.43%)d
				0.00(0.02%)
			(35.79%) 0.5983* C7	s(21.63%)p 3.62(78.21%)d
4	0.00250	DD (1)N2 N2	(A(CO)) = 0	0.01(0.16%)
4	0.99350	BD(1)N2-N3	(40.02%) 0.0828* N2	(25.49%)p 2.92(74.34%)d
			(52, 280/) 0.7206* NI2	0.01(0.17%)
			(33.3870) 0.7300 113	S(27.2176)p 2.07(72.7076)d
5	0.80330	BD*(1)N2-C5	(62.25%) 0.7890* N2	s(0.00%) 1.00(99.86%)d
5	0.00550	DD (1) R2 C3	(02.2570) 0.7090 112	0.00(0.14%)
			(37.75%) -0.6144*	s(0.00%)n 1.00(99.98%)d
			C5	0.00(0.02%)
6	0.99052	BD(1)N3-C4	(68.17%) 0.8257* N3	s(39.60%)p 1.52(60.38%)d
				0.00(0.02%)
			(31.83%) 0.5641* C4	s(22.50%)p 3.43(77.26%)d
				0.01(0.24%)
7	0.99473	BD(1)N3-C6	(64.11%) 0.8007* N3	s(33.17%)p 2.01(66.81%)d
				0.00(0.02%)
			(35.89%) 0.5991*C6	s(22.07%)p 3.52(77.77%)d
				0.01(0.16%)
8	0.98192	BD(1)C4-C5	(44.25%) 0.6652* C4	s(32.21%)p 2.10(67.66%)d
				0.00(0.13%)
			(55.75%) 0.7467* C5	s(38.14%)p 1.62(61.82%)d
0	0.00205		(51,000/) 0,71,40* (75	(2000) $(0.04%)$
9	0.99305	BD(1)C5-C8	(51.00%) 0./142*C5	s(36.8%)p 1./1(63.10%)d
			(40,000/) 0.7000* C9	(0.00(0.03%))
			(49.00%) 0.7000 C8	$\left[\begin{array}{c} 5(27.3270) p 2.03(72.4370) 0 \\ 0.00(0.05\%) \end{array} \right]$
30	0.95224	IP(1)C4		s(4617%) n 1 16(53 77%)
50	0.75224			0.00(0.06%)
31	0.36069	$LP^{*}(2)C4$		s(0.00%)p 1.00(99 75%)d
-		(-)		0.00(0.25%)

193	0.36330	BD(1)N2-C5	(37.75%) 0.6144* N2	s(0.00%)p 1.00(99.86%)d
				0.00(0.14%)
			(62.25%) 0.7890* C5	s(0.00%)p 1.00(99.98%)d
				0.00(0.02%)
194	0.01201	BD*(1)N3 -C4	(31.83%) 0.5641* N3	s(39.60%)p 1.52(60.38%)d
				0.00(0.02%)
			(68.17%) -0.8257*	s(22.50%)p 3.43(77.26%)d
			C4	0.01(0.24%)

1,3,4-methyl-1,2,3-triazolin-5-thione (II)

Sl No	Occupancy	Bond orbital	Coefficients	Hybrids
1	0.99259	BD(1)N1-N2	(55.04%) 0.7419* N1	s(28.40%)p 2.52(71.52%)d
				0.00(0.08%)
			(44.96%) 0.6705* N2	s(24.91%)p 3.01(74.93%)d
				0.01(0.17%)
2	0.99180	BD(1)N1-C5	(63.76%) 0.7985* N1	s(37.94%)p 1.63(62.03%)d
				0.00(0.03%)
			(36.24%) 0.6020* C5	s(25.99%)p 2.84(73.88%)d
				0.00(0.13%)
3	0.99456	BD(1)N1-C7	(64.65%) 0.8041* N 1	s(33.60%)p 1.98(66.37%)d
				0.00(0.02%)
			(35.35%) 0.5945* C7	s(21.30%)p 3.69(78.54%)d
				0.01(0.16%)
4	0.99242	BD(1)N2-N3	(45.86%) 0.6772* N2	s(24.98%)p 3.00(74.85%)d
				0.01(0.17%)
			(54.14%) 0.7358* N3	s(28.18%)p 2.55(71.73%)d
				0.00(0.09%)
5	0.81054	BD*(1)N2-C5	(63.43%) 0.7964* N2	s(0.00%)p 1.00(99.86%)d
				0.00(0.14%)
			(36.57%) -0.6047* C5	s(0.00%)p 1.00(99.97%)d
				0.00(0.03%)
6	0.99217	BD(1)N3-C4	(63.85%) 0.7991* N3	s(36.95%)p 1.71(63.02%)d
				0.00(0.03%)
			(36.15%) 0.6013* C4	s(25.51%)p 2.91(74.35%)d
				0.01(0.14%)
7	0.99466	BD(1)N3-C6	(64.96%) 0.8060* N3	s(34.81%)p 1.87(65.17%)d
				0.00(0.02%)
			(35.04%) 0.5920* C6	s(21.07%)p 3.74(78.77%)d
	0.004(0			0.01(0.16%)
8	0.98462	BD(1)C4-C5	(49.16%) 0.7012* C4	s(34.84%)p 1.8/(65.10%)d
			(50.84%) 0.7130* C5	s(35.54%)p 1.81(64.41%)d
				0.00(0.05%)

9	0.99111	BD(1)C4-S18	(60.81%) 0.7798* C4	s(39.62%)p 1.52(60.32%)d
				0.00(0.06%)
			(39.19%) 0.6260* S18	s(17.63%)p 4.63(81.65%)d
				0.04(0.72%)
10	0.99183	BD(1)C5-C8	(52.04%) 0.7214* C5	s(38.43%)p 1.60(61.54%)d
				0.00(0.02%)
			(47.96%) 0.6926* C8	s(26.47%)p 2.78(73.48%)d
				0.00(0.05%)
11	0.51219	LP*(1) C4		s(0.00%)p 1.00(99.99%)d
				0.00(0.01%)
12	0.99397	LP (1)S18		s(83.06%)p 0.20(16.92%)d
				0.00(0.02%)
13	0.93645	LP(2)S18		s(0.04%)p99.99(99.91%)d
				1.08(0.05%)
14	0.83280	LP(3)S18		s(0.00%)p 1.00(99.90%)d
				0.00(0.10%)
215	0.36110	BD(1)N2-C5	(36.57%) 0.6047* N2	s(0.00%)p 1.00(99.86%)d
				0.00(0.14%)
			(63.43%) 0.7964* C5	s(0.00%)p 1.00(99.97%)d
				0.00(0.03%)
216	0.04394	BD*(1)N3-C4	(36.15%) 0.6013* N3	s(36.95%)p 1.71(63.02%)d
				0.00(0.03%)
			(63.85%) -0.7991* C4	s(25.51%)p 2.91(74.35%)d
				0.01(0.14%)

1,3,4-methyl-1,2,3-triazolin-5-selone (III)

Sl. No	Occupancy	Bond orbital	Coefficients	Hybrids
1	0.99271	BD(1)N1-N2	(55.01%) 0.7417* N1	s(28.36%)p 2.52(71.56%)d
				0.00(0.08%)
			(44.99%) 0.6707* N2	s(24.90%)p 3.01(74.94%)d
				0.01(0.17%)
2	0.99154	BD(1)N1-C5	(63.75%) 0.7984* N1	s(37.92%)p 1.64(62.05%)d
				0.00(0.03%)
			(36.25%) 0.6021* C5	s(25.75%)p 2.88(74.12%)d
				0.00(0.13%)
3	0.99458	BD(1)N1-C7	(64.70%) 0.8044* N1	s(33.67%)p 1.97(66.31%)d
				0.00(0.02%)
			(35.30%) 0.5941* C7	s(21.28%)p 3.69(78.56%)d
				0.01(0.16%)
4	0.99238	BD(1)N2-N3	(45.84%) 0.6770* N2	s(25.01%)p 2.99(74.82%)d
				0.01(0.17%)
			(54.16%) 0.7359* N3	s(28.03%)p 2.56(71.88%)d
				0.00(0.09%)
5	0.80270	BD*(1)N2-C5	(64.01%) 0.8001* N2	s(0.00%)p 1.00(99.86%)d

				0.00(0.14%)
			(35.99%) -0.5999* C5	s(0.00%)p 1.00(99.97%)d
				0.00(0.03%)
6	0.99212	BD(1)N3-C4	(64.10%) 0.8006* N3	s(37.24%)p 1.68(62.74%)d
				0.00(0.03%)
			(35.90% 0.5991*C4	s(25.65%)p 2.89(74.20%)d
				0.01(0.15%)
7	0.99457	BD(1)N3-C6	(65.10%) 0.8069* N3	s(34.67%)p 1.88(65.31%)d
				0.00(0.02%)
			(34.90%) 0.5907* C6	s(21.00%)p 3.75(78.84%)d
				0.01(0.16%)
8	0.98486	BD(1)C4-C5	(48.80%) 0.6986* C4	s(35.17%)p 1.84(64.76%)d
				0.00(0.06%)
			(51.20%) 0.7155* C5	s(35.96%)p 1.78(64.00%)d
				0.00(0.05%)
9	0.98930	BD(1)C4-Se18	(64.06%) 0.8003* C4	s(39.19%)p 1.55(60.79%)d
				0.00(0.03%)
			(35.94%)	s(13.70%)p 6.28(85.96%)d
			0.5995*Se18	0.03(0.34%)
10	0.99179	BD(1)C5-C8	(52.16%) 0.7223* C5	s(38.27%)p 1.61(61.71%)d
				0.00(0.02%)
			(47.84%) 0.6916* C8	s(26.40%)p 2.79(73.55%)d
				0.00(0.06%)
45	0.51192	LP*(1)C4		s(0.00%)p 1.00(99.98%)d
				0.00(0.02%)
46	0.99467	LP(1)Se18		s(87.12%)p 0.15(12.88%)d
				0.00(0.00%)
47	0.94362	LP(2)Se18		s(0.05%)p99.99(99.92%)d
				0.59(0.03%)
10	0.84684	LP(3)Se18		s(0.00%)p 1.00(99.90%)d
48				
226	0.36069	BD(1)N2-C5	(35.99%) 0.5999* N2	s(0.00%)p 1.00(99.86%)d
				0.00(0.14%)
			(04.01%) 0.8001° C5	s(0.00%)p 1.00(99.97%)d
227	0.02052		(25,000/) 0,5001*NT2	(0.00(0.03%))
227	0.03953	BD*(1)N3-C4	(33.90%) 0.5991* N3	s(3/.24%)p 1.08(62./4%)d
				(0.00(0.03%))
			(04.10%) -0.8006*	s(23.05%)p 2.89(/4.20%)d
			U4	0.01(0.15%)