Supporting Information File

An Insight into Outer- and Inner- Sphere Electrochemistry on Oxygenated

Single-Walled Carbon Nanohorns (o-SWCNHs)

Arvind S. Ambolikar^{a,b}, Saurav K. Guin^{a,*} and Suman Neogy^c

^{*a}</sup>Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085, India.*</sup>

^bHomi Bhabha National Institute, Anushaktinagar, Mumbai – 400094, India.

^cMechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.

[*] Corresponding Author:	Dr. Saurav K. Guin; Ph.D., M.Sc.
	Email: sauravkrguin@yahoo.co.in, skguin@barc.gov.in
	<i>Tel.:</i> +91-22-2559-4598/0656;
	<i>Fax:</i> +91-22-2550-5151
	ORCID ID: https://orcid.org/0000-0001-6108-0751

Revised Supporting Information File - Page 1 of 10

Fig. S1 The histograms of the diameters of the *[A]* dahlia-like and *[B]* bud-like aggregates calculated from Fig. 1[A].

Fig. S2 The XRD pattern of o-SWCNH.

Revised Supporting Information File - Page 2 of 10

Fig. S3 The XPS survey spectrum of *o*-SWCNH.

Table S1 The peak parameters of the CVs of 5 mM $K_3[Fe(CN)_6]$ in 0.1 M KCl on GC and o-SWCNH/GC.

Scan			GC			o-SWCNH/GC				
Rate / mV s ⁻¹	E_p^a / V	E_p^c / V	$\Delta E_p / V$	<i>I</i> ^a _p / μΑ	<i>I</i> ^c _p / μΑ	E_p^a / V	E_p^c / V	$\Delta E_p / V$	<i>I</i> ^a _p / μΑ	<i>I</i> ^c _p / μΑ
25	0.2978	0.2276	0.0702	46.8	-46.0	0.2950	0.2330	0.0620	53.8	-51.5
50	0.2982	0.2260	0.0722	65.5	-64.8	0.2960	0.2330	0.0630	75.1	-73.3
75	0.2997	0.2260	0.0737	79.8	-78.8	0.2970	0.2320	0.0650	90.6	-89.7
100	0.3004	0.2250	0.0754	91.4	-90.9	0.2980	0.2310	0.0670	105.3	-103.2
150	0.3018	0.2240	0.0778	110.8	-109.9	0.2990	0.2300	0.0690	128.8	-115.1
200	0.3022	0.2230	0.0792	127.5	-126.2	0.3000	0.2290	0.0710	148.6	-146.2
250	0.3030	0.2220	0.0810	142.0	-140.4	0.3010	0.2280	0.0730	166.0	-163.5
300	0.3035	0.2217	0.0818	154.1	-153.3	0.3020	0.2270	0.0750	182.6	-180.0

Fig. S4 [A] Plot of $ln(I_p^c)$ versus ln(v) for the redox reaction of $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ in 0.1 M KCl (pH 6.8) on (a) GC and (b) o-SWCNH/GC. Plots of i_p^c versus $v^{\frac{1}{2}}$ for the same reaction on [B] GC and [C] o-SWCNH/GC electrodes.

Fig. S5 The electrical equivalent circuits fitted with the impedance data of 5 mM $K_3[Fe(CN)_6]$ in

0.1 M KCl on [A] GC and [B] o-SWCNH/GC.

Revised Supporting Information File - Page 4 of 10

Table S2 The values of the elements of electrical equivalent circuits fitted with the impedance data of 5 mM $K_3[Fe(CN)_6]$ in 0.1 M KCl on **[A]** GC and **[B]** o-SWCNH/GC. The potential was kept constant at 0.263 V with sine potential perturbation with amplitude of 5 mV in the frequency range 1×10^5 to 1×10^{-1} Hz.

Electrode	R_s / Ω	R _{CT} / Ω	СРЕ		W		0		
			Q ₀ / mMho	n'	Y ₀ / mMho	$R_{ m F}$ / Ω	Y ₀ / mMho	В	χ^2
GC	23.1	55.6	0.0011	0.88	1.07	I	I	-	0.0109
o-SWCNH/ GC	12.1	0.027	0.0001	0.73	1.19	12.07	6.09	0.033	0.0192

Fig. S6 The Bode plots of modulus impedance (Z) and phase difference (φ) between the applied potential and recorded current of the electrochemical impedance spectra of 5 mM $K_3[Fe(CN)_6]$ in 0.1 M KCl on GC and o-SWCNH/GC.

Fig. S7 Current sampled during the application of **(a)** forward and **(b)** reverse pulses in the square wave voltammograms of $[Fe(CN)_6]^{3-}$ in 0.1 M KCl (pH 6.8) on **[i]** GC and **[ii]** o-SWCNH/GC.

Table S3 The peak parameters of the CVs of 5 mM $[Ru(NH_3)_6]$ in 0.1 M KCl on GC and o-SWCNH/GC.

Scan			GC			o-SWCNH/GC				
Rate / mV s ⁻¹	E_p^a / V	E_p^c / V	$\Delta E_p / V$	<i>I</i> ^a _p / μΑ	<i>I</i> ^c _p / μΑ	E_p^a / V	E_p^c / V	$\Delta E_p / V$	<i>I</i> ^a _p / μΑ	<i>I</i> ^c _p / μΑ
25	-0.095	-0.170	0.075	45.3	-45.1	-0.095	-0.176	0.081	42.6	-48.9
50	-0.093	-0.171	0.078	63.3	-62.8	-0.093	-0.180	0.087	54.1	-68.9
75	-0.091	-0.173	0.082	77.0	-76.1	-0.091	-0.183	0.092	64.4	-83.4
100	-0.089	-0.174	0.085	88.5	-87.9	-0.090	-0.186	0.096	71.1	-96.2
150	-0.087	-0.177	0.090	106.8	-106.0	-0.086	-0.192	0.106	83.1	-118.6
200	-0.084	-0.179	0.095	121.9	-123.1	-0.084	-0.196	0.112	89.9	-137.5
250	-0.083	-0.181	0.098	135.9	-136.2	-0.081	-0.201	0.120	99.8	-151.9
300	-0.082	-0.183	0.101	148.6	-148.4	-0.079	-0.204	0.125	109.8	-167.2

Fig. S8 Plot of $ln(I_p^c)$ versus ln(v) for the redox reaction of $[Ru(NH_3)_6]^{3+}/[Ru(NH)_3]^{2+}$ in 0.1 M KCl on (a) GC and (b) o-SWCNH/GC.

Fig. S9 Current sampled during the application of (a) forward and (b) reverse pulses in the square wave voltammograms of $[Ru(NH_3)_6]^{3+}$ in 0.1 M KCl (pH 6.8) on [i] GC and [ii] o-SWCNH/GC.

Fig. S10 CVs of 0.8 mM $[U^{(VI)}O_2(CO_3)_3]^{4-}$ in sat. Na₂CO₃ (pH 10.9) on (a) o-SWCNH/GC and (b) electrochemically reduced o-SWCNH/GC at $v = 25 \text{ mV s}^{-1}$.

Table S4 The impedance parameters of 0.8 mM $[U^{(VI)}O_2(CO_3)_3]^{4-}$ in sat. Na₂CO₃ (pH 10.9) on GC and o-SWCNH/GC obtained by fitting the experimentally obtained impedance data with Randles EEC. The potential was kept constant at -0.742 V with sine potential perturbation with amplitude of 10 mV in the frequency range 1×10^5 to 1×10^{-2} Hz.

Pa	rameters	GC	o-SWCNH/GC		
	R_s / Ω	19.1	25.9		
J	$R_{ct}/k\Omega$	181	3.47		
СРЕ	Y ₀ / μMho	2.14	69.9		
	n	0.86	0.87		
W	Y ₀ / μMho	9.9	509		
	χ^2	0.6451	0.1001		

Fig. S11 The Bode plots of modulus impedance (Z) and phase difference (φ) between the applied potential and recorded current of the electrochemical impedance spectra of 0.8 mM $[U^{(VI)}O_2(CO_3)_3]^{4-}$ in sat. Na₂CO₃ on GC and o-SWCNH/GC.

Table S5 The peak parameters of the CVs of 0.8 mM $[U^{(VI)}O_2(CO_3)_3]^{4-}$ in sat. Na₂CO₃ on GC and o-SWCNH/GC.

Caar			GC			o-SWCNH/GC				
Scan Rate / mV s ⁻¹	$\frac{\operatorname{te}}{\mathrm{s}^{-1}} = \frac{E_p^a}{V} + \frac{V}{V}$	E_p^c / V	$\Delta E_p / V$	<i>j^a_p /</i> mA cm ⁻²	<i>j^c_p /</i> mA cm ⁻²	E_p^a / V	E_p^c / V	Δ E _p / V	<i>j^ap /</i> mA cm ⁻²	<i>j^c_p /</i> mA cm ⁻²
25	-0.218	-1.265	1.047	0.10	-0.19	-0.588	-0.906	0.318	0.23	-0.26
50	-0.174	-1.321	1.147	0.15	-0.25	-0.547	-0.927	0.380	0.31	-0.33
75	-0.149	-1.346	1.197	0.19	-0.31	-0.523	-0.941	0.418	0.37	-0.37
100	-0.129	-1.370	1.241	0.21	-0.35	-0.504	-0.960	0.456	0.42	-0.42
150	-0.105	-1.390	1.285	0.26	-0.42	-0.476	-0.976	0.500	0.46	-0.49
200	-0.085	-1.407	1.322	0.29	-0.48	-0.455	-0.996	0.541	0.52	-0.53
250	-0.070	-1.417	1.347	0.33	-0.53	-0.431	-1.025	0.594	0.57	-0.58
300	-0.055	-1.428	1.373	0.35	-0.57	-0.410	-1.050	0.640	0.60	-0.61

Fig. S12 The forward (i.e., cathodic, j_f), backward (i.e., anodic, j_b) and difference (i.e., $j_d = j_f - j_c$) current densities in the cathodic square wave voltammogram of 0.8 mM $[U^{(VI)}O_2(CO_3)_3]^{4-}$ in sat. Na₂CO₃ (pH 10.9) on o-SWCNH at amplitude and frequency 0.05 V and 50 Hz, respectively.