Supporting Information for New Journal of Chemistry

Electronic Supporting Information

Quaternized POSS modified rGO-supported Pd nanoparticles as high efficient catalyst for reduction and Suzuki coupling reactions

Siwen Xia, Yu Yang, and Changli Lü*

Experimental section

Synthesis of graphite oxide

GO was prepared according to the modified Hummer's method. Firstly, 1.0 g of graphite powders, 1.25 g of K₂S₂O₈, 1.25 g of P₂O₅ and 4.0 mL of H₂SO₄ (98%, 4 mL) were added into a three roundbottom flask, at same time was stirred them at 80 °C for 4.5 h. After the solution was cooled to room temperature, 170 mL of distilled water was added. The black mixture was filtered using a water pump and washed several times with distilled water, then dried under vacuum at 120 °C for 12 h to obtain the pre-oxidized graphite. Secondly, 1 g of pre-oxidized graphite was added to the three round bottom flask, 50 mL of H₂SO₄ (98%) and 5.0 g of KMnO₄ was slowly added under an ice bath to keep the mixture cooled down around 20 °C, the color of the solution was dark green. Then, the solution was stirred for 3.5 h at 35 °C and 30 mL of water was slowly added to the above solution. Next the mixture was further stirred for 15 min at 98 °C and the color of the solution was observed to be turn bright yellow, 240 mL of water and 6 mL of 30 wt% H₂O₂ were separately added to the above mixture. The resulting mixture was obtained by centrifugation and washed several times with 10 wt% HCl solution and distilled water to remove residual acid. Finally, the graphite oxide was subjected to ultrasonication for 1 h under a water bath. The GO dispersion was collected by centrifugation centrifuged and dried by freeze-drying.

Synthesis of GO-supported PdNPs (PdNPs@rGO)

GO (30 mg) was dispersed into distilled water (150 mL) using ultrasonication for 30 min. PdCl₂ (6.0 mL, 0.885 mg mL⁻¹) was added into the above solution for ultrasound 2.0 h PdCl₂. 6.0 mL of freshly prepared NaBH₄ solution (0.2 M) was added and the reaction solution was continuously stirred at room temperature for 24 h. The product PdNPs@rGO was collected by centrifugation and washed several times with water and ethanol to remove unsupported palladium nanoparticles and PdCl₂, then dried at room temperature in a vacuum. The amount of Pd in the PdNPs@rGO catalyst was determined by ICPAES to be about 6.94 wt%

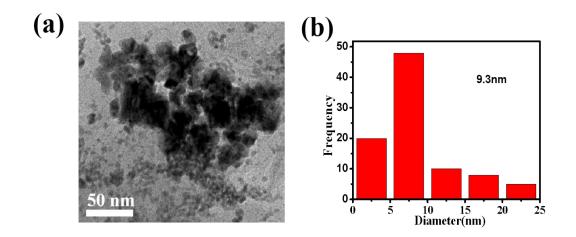
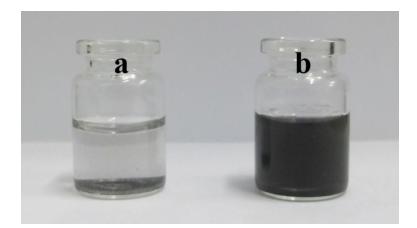
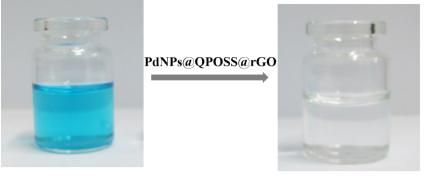
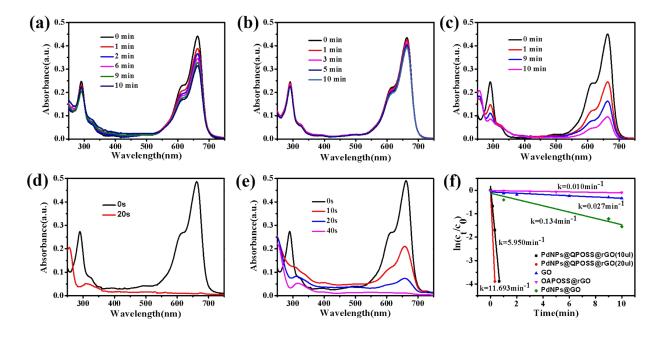
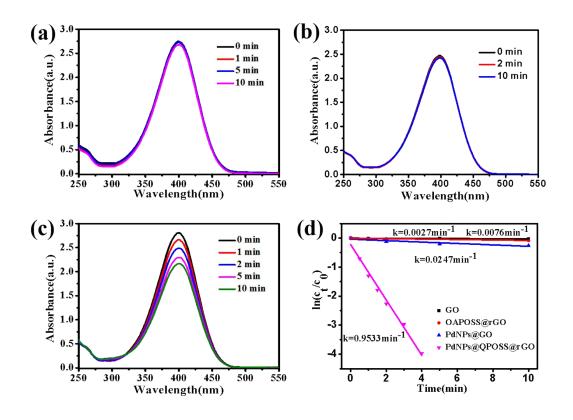




Fig. S1 TEM image of (a) PdNPs@rGO, and (b) Pd particle size distribution histogram on PdNPs@rGO.


Fig. S2 Optical photographs of (a) PdNPs@rGO and (b) PdNPs@QPOSS@rGO dispersed in aqueous solution after two weeks, all of their concentrations are 0.25 mg mL⁻¹.


Methylene Blue (MB)

Leuco Methylene Blue (LMB)

Fig. S3 Optical photographs for the catalytic reduction of MB to LMB.

Fig. S4 Successive reduction reaction of MB using catalysts (20 μ L): (a) GO, (b) OAPOSS@rGO, (c) PdNPs@rGO, (d) PdNPs@QPOSS@rGO (20 μ L), (e) PdNPs@QPOSS@rGO (10 μ L) and (f) Plots of ln (C_t/C₀) vs. reaction time (t) for different control catalysts (0.1 mg mL⁻¹ catalyst, 2.0 mL of 0.013 mM MB and 1.0 mL of 0.5 M NaBH₄ were used for the reduction of MB).

Fig. S5 Successive reduction of p-NP using (a) GO (30 μ L), (b) OAPOSS@rGO (30 μ L), and (c) PdNPs@rGO (30 μ L) as catalysts (0.25 mg mL⁻¹ catalyst, 2.0 mL of 0.325 mM p-NP and 1.0 mL of 0.2 M NaBH₄ were used for the reduction of p-NP). and (d) Plots of ln (C_t/C₀) vs. reaction time (t) for different control catalysts.

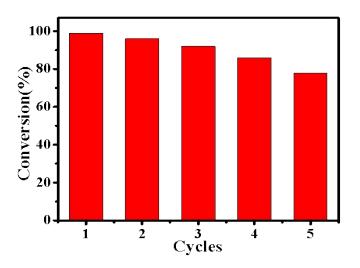


Fig. S6 The reusability of PdNPs@QPOSS@rGO catalysts in the p-NP reduction reaction.

Samples	Time (s) ^a	<i>k</i> (min) ^b	TOF (min) ^c	Refs
Pd-TNPs/RGO	420	0.4	1.226	1
Ag/MFC	600	0.34	-	2
Graphene-PDA-Pd	300	0.1224	-	3
Pd NPs (pc-7)	420	1.006	108.27	4
Pd-PIBrGO	30	9.563	2198.4	5
Mesoporous3D wood@Pd membrane	Rapidly	-	2.02	6
MpSi-Pd	4	0.655	1.78	7
Fe-Fe ₂ O ₃ @PDA@Pd	420	0.9	-	8
RGO/Fe ₃ O ₄	240	-	-	9
PdNPs@QPOSS@rGO	20	11.693	2431.5	This work

Table S1 Comparison of the ability of various catalysts for catalyzing the reduction of MB.

^a The reduction time of MB in the presence of catalyst. ^bApparent rate constant. ^c Turnover frequency (TOF), defined as moles of MB molecules reduced per mole of Pd catalyst per unit time, is calculated based on the Pd contents in PdNPs@QPOSS@rGO (3.48 wt%.) determined by ICP.

Samples	Time(min)	<i>k</i> (min)	TOF(min) ^c	Refs
Fe ₃ O ₄ @PDA-Pd@[Cu3(btc) ₂]	8	0.72	-	10
Pd@TP-POP	5.75	0.61	3.8	11
GO-MnFe ₂ O ₄ -PdNPs	4	0.768	-	12
UiO-66-NH ₂ /TTACP/Ni@Pd	2.5	0.852	-	13
MpSi-Pd	30	0.159	1.4	7
Au NPs@GFDP	7	0.665	7.3	14
PS@RGO@Pd	10	0.286	-	15
Pd/CNs	10	0.342	14.7	16
Graphene-PDA-Pd	9	0.283	0.03	3
PdNPs@QPOSS@rGO	4	0.95	30.6	this work

Table S2 Comparison of the ability of various catalysts for catalyzing the reduction of p-NP.

^a Turnover frequency (TOF) is defined as the number of moles of p-NP reduced per mole of Pd catalyst per hour.

Entry	Catalyst	Solvent	Т	Time	Conversion	Refs
			(°C)	(%)	(%)	
1	GO-PdP ₂	EtOH-H ₂ O	80	2h	88	17
2	(0.5 mol%) PdNPs-IP-IL (1.0 mol%)	H ₂ O	100	6h	55	18
3	Pd@APGO (0.24 mol%)	EtOH-H ₂ O	80	6h	80	19
4	Fe ₃ O ₄ @C-Pd@mCeO ₂ (0.29 mol%)	EtOH-H ₂ O	80	3h	95	20
5	SiO2-pA-Cyan-Cys-Pd (0.5 mol%)	H ₂ O	100	5.5h	88	21
6	Fe ₃ O ₄ -DA-DMG/Pd ⁰	H ₂ O	80	12h	97.4	22
7	(1.0 mol %) 3D IL-rGO/Pd (0.5 mol%)	EtOH-H ₂ O	80	1h	94	23
8	3D G/MWCNTs/Pd (0.5 mol%)	EtOH-H ₂ O	60	1h	95	24
9	Pd@GOF (1.1mol%)	EtOH	40	24h	97	25
10	Pd@Mag-Msn (1.0 mol%)	Dioxane	80	6h	77	26
11	Pd/BOFs (2.6 mol%)	H ₂ O	80	2h	91	27
12	PEG-Pd (1.2 mol%)	EtOH-H ₂ O	80	12h	93	28
13	PdNPs@QPOSS@rGO (0.3 mol%)	H ₂ O	80	2h	99.8	This work

 Table S3 Comparison of the ability of various catalysts for Suzuki cross-coupling reactions of bromobenzene and phenylboronic acid.

Table S4 Leached amount Pd of PdNPs@QPOSS@rGO by ICP.

Entry	Element Pd Concentration in solution, mg/L (ppm)		
Before four cycles	5.98		
After four cycles	5.59		

The turnover frequency (TOF) values of the corresponding reactions were calculated according to following equation:²⁹

$$TOF = \frac{[MB] \times conversion}{[Pd] \times t}$$
 Eq.1

Here the concentrations of methylene blue [MB] was fixed to be 1.04×10^{-5} M, and [Pd] was determined by ICP-AES. The conversion at time *t* can be obtained from Fig. 7c. We estimated the TOF values for all the runs with the conversion of MB at 30%. The TOF values of the catalytic reactions for 4-nitrophenol were calculated according to the equation similar to MB. The molar concentration [4-NP] of substrate was 1×10^{-5} M. The Pd molar concentration [Pd] of PdNPs@QPOSS@rGO in reaction systems was calculated by ICP-AES results. The conversion at reaction time *t* can be obtained from Fig. 8d. The calculation for TOF values of the catalytic reduction of nitrophenols with the conversion of NPs at 100%.

References

- 1. G. Fu, L. Tao, M. Zhang, Y. Chen, Y. Tang, J. Lin and T. Lu, Nanoscale, 2013, 5, 8007-8014.
- 2. M. Zhu, C. Wang, D. Meng and G. Diao, J. Mater. Chem. A, 2013, 1, 2118–2125.
- 3. J. X. Ma, H. Yang, S. Li, R. Ren, J. Li, X. Zhang and J. Ma, RSC Adv., 2015, 5, 97520-97527.
- 4. V. Vilas, D. Philip and J. Mathew, Mater. Chem. Phys., 2016, 170, 1-11.
- 5. K. Y. Cho, Y. S. Yeom, H. Y. Seo, P. Kumar, A. S. Lee, K.Y. Baek and H. G. Yoon, *J. Mater. Chem. A*, 2015, **3**, 20471–20476.
- 6. F. Chen, A. S. Gong, M. Zhu, G. Chen, S. D. Lacey, F. Jiang, Y. Li, Y. Wang, J. Dai, Y. Yao, J.
- Song, B. Liu, K. Fu, S. Das and L. Hu, ACS Nano, 2017, 11, 4275-4282.
- 7. T. Kim, X. Fu, D. Warther and M. J. Sailor, ACS Nano, 2017, 11, 2773–2784.
- S. Wang, J. Fu, K. Wang, M. Gao, X. Wang, Z. Wang, J. Chen and Q. Xu, *Appl. Surf. Sci.*, 2018, 459, 208–216.
- 9. M. Vinothkannan, C. Karthikeyan, G. G. Kumar, A. R. Kim and D. J. Yoo, Spectrochim. Acta, Part A, 2015, 136, 256-264.
- 10. R. Ma, P. Yang, Y. Ma and F. Bian, ChemCatChem., 2018, 10, 1446-1454.
- J. Yang, M. Yuan, D. Xu, H. Zhao, Y. Zhu, M. Fan, F. Zhang and Z. Dong, J. Mater. Chem. A, 2018, 6, 18242–18251
- 12. K. Karami and N. S. Mousavi, Dalton Trans., 2018, 47, 4175-4182.
- 13. S. M. Sadeghzadeh, R, Zhianiab and S. Emrani, New J. Chem., 2018, 42, 988-994.
- 14. Wang, H. Duan, J. Lu and C. Lu, J. Mater. Chem. A, 2017, 5, 5088-5097
- 15. X. Ni, Z. Wu, X. Gu, D. Wang, C. Yang, P. Sun and Y. Li, Langmuir, 2017, 33, 8157-8164.
- 16. X. Wu, C. Lu, W. Zhang, G. Yuan, R. Xiong and X. Zhang, J. Mater. Chem. A, 2013, 1,

8645-8652.

- 17. H. Joshi, K. N. Sharma, A. K. Sharma and A. K. Singh, Nanoscale, 2014, 6, 4588-4597.
- 18. X. Yang, Z. Fei, D.Zhao, W. H. Ang, Y. Li and P. J. Dyson, Inorg. Chem., 2008, 47, 3292-3297.
- 19. V. B. Saptal, M. V. Saptal, R. S. Mane, T. Sasaki and B. M. Bhanage, *ACS Omega*, 2019, **4**, 64-649.
- 20. Y. Li, Z. Zhang, J. Shen and M.Ye, Dalton Trans., 2015, 44, 16592-16601.
- 21. H. Veisi, S. Najafi, S. Hemmati, Int. J. Biol. Macromol., 2018, 113, 186-194.
- 22. L.Wu, B.Yuan, M. Liu, H. Huo, Y.Long, J. Ma and G. Lu, RSC Adv., 2016, 6, 56028-56034.
- 23. Y. Huang, Q. Wei, Y. Wang, L. Dai, Carbon, 2018, 136, 150-159.
- 24. H. Song, Q, Zhu, X. Zhenga and X. Chen, J. Mater. Chem. A, 2015, 3, 10368-10377.
- 25. T. P. N.Tran, A. Thakur, D. X. Trinh, A. T. N. Dao, T. Taniike, *Appl. Catal. A*, 2018, 549, 60–67.
- 26. S. Shylesh, L. Wang, S. Demeshko and W. R. Thiel, ChemCatChem., 2010, 2, 1543-1547.
- 27. B. Qi, X. Li, L. Sun, B. Chen, H. Chen, C. Wu, H. Zhang and X. Zhou, *Nanoscale*, 2018, **10**, 19846–19853
- 28. R. F. Alamdari, M. G. Haqiqib and N. Zekria, New J. Chem., 2016, 40, 1287-1296.
- 29. X. Liu, F. Cheng, Y. Liu, H. Ji and Y. Chen, J. Mater. Chem., 2010, 20, 360-368.