Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

A New Fluorescence Probe of Nitrogen-doped Graphene Quantum Dots for The Selective and Quantitative Determination of Cerium (IV) Ion of The Rare Earth Element

Xu Chu^a, Shengnan Wang^a, Yan Cao^{a,b*}

 ^a College of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
^b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
(Corresponding author. E-mail: <u>caoyan@ms.giec.ac.cn</u>)

Fig. S1 (a) the relative PL intensity of the prepared N-GQDs at different pH values; Excitation wavelength: 320 nm; Emission wavelength: 450 nm. (b) The fluorescence intensity of the prepared N-GQDs during continuous excitation with a UV beam. Irradiation time covered from 0 to 60 mins.

Fig. S2 (a) fluorescence responses of aqueous solution (black line). fluorescence responses of Ce⁴⁺ ions (red line). fluorescence responses of Ce³⁺ ions (red line).inset: photographs of the Ce⁴⁺ ions (left) and Ce³⁺ ions (right); The use of Ce⁴⁺ was from Ce³⁺ of Ce(NO₃)₃ after its oxidation, and the evidence of Ce⁴⁺ was shown in Fig. S2a which exhibited the disappeared typical fluorescence peak of Ce³⁺ to support the existence of truly Ce⁴⁺ in Ce(NO₃)₃. (b) fluorescence responses of N-GQDs aqueous solution (0.015 mg/mL) (black line). The red line represents the FL changes of the prepared N-GQDs solution at the addition of Ce⁴⁺ (30 μ M). The blue line represents the FL changes of the prepared N-GQDs solution at the addition of (NH₄)₂Ce(NO₃)₆ (30 μ M) if mm Ce³⁺ of Ce(NO₃)₃ after its oxidation. The olive line represents the FL changes of the prepared N-GQDs solution at the addition of (NH₄)₂Ce(NO₃)₆ (200 μ M). We compared the fluorescence in following five cases, 1) the N-GQDs solution only, 2) and 3) the addition of the Small amount of cerium (IV) in the N-GQDs solution in the presence or absence of the NH₄⁺ ion, 4)

and 5) the addition of the excessive amount of cerium (IV) in the N-GQDs solution in the presence or absence of the NH_4^+ ion. Results were shown in Fig. S2b (ESI[†]), exhibiting the ignorant effect of the presence of the NH_4^+ ion on the fluorescence system of the N-GQDs solution and cerium (IV), and only significant response of the fluorescence upon the addition of the Ce⁴⁺ ion in the N-GQDs solution whatever the NH_4^+ ion presented.

Fig. S3 (a) high resolution C1s XPS spectra of the N-GQDs before and after the addition of Ce^{4+} ;(b) the time-resolved fluorescence spectra of N-GQDs and N-GQDs-Ce with excitation wavelength of 286 nm and emission wavelength of 450 nm.

Fig. S4 (a) UV transmission spectra of N-GQDs (0.015 mg/mL) with and without Ce^{4+} ion (Concentration: 200 μ M). (b) Dynamic light scattering analysis result of N-GQDs (0.015 mg/mL).