Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information (ESI)

Lower methane combustion temperature on palladium nanoparticles anchored on TiO_x subnano-islets in stellate mesoporous silica nanospheres

Rihem Dardouri^{*a}, Rufino M. Navarro Yerga^b, Noelia Mota^b, Belen Albela^c, Laurent Bonneviot^{*c}, Mongia Saïd Zina^a

^a Laboratoire de Chimie des Matériaux et Catalyse, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia ^b Instituto de Catálisis y Petroleoquímica (CSIC), Marie Curie 2, Cantoblanco, E-28049 Madrid, Spain

^c Laboratoire de chimie, Ecole Normale Supérieure de Lyon UMR-CNRS 5182, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France

Scheme S1. Different synthesis routes followed to generate Pd₁TiMSNsc, Pd₁TiMSNs and Pd₁TiMSN catalysts.

Fig. S1: Thermogravimetric analysis (TG) of (a) MSN, (b) MSN_S and (c) MSN_{S'}.

The first mass loss occurring at 130 °C was attributed to physically adsorbed water. The weight loss centered at 350 °C was attributed to CTA^+ adsorbed onto its tosylate counterion and the peak located at 250 °C was associated to CTA^+ interacting directly with silanolate groups (SiO⁻). The last mass loss at 600 °C was assigned to water evolution from silanol condensation. Fig. S1b shows TGA profiles of silylated MSN particles (MSN_s) which displays weight loss at 100 °C due to the adsorbed water of the external surface of MSN and it was approximately less than 0.5% which confirm the hydrophobicity enhancement obtained by the replacement of the surface silanol groups by trimethylsilyl groups. A small

weight loss was observed at 300 °C probably due to the remaining surfactant. The decomposition of TMS groups occurs at higher temperature, between 450° and 600 °C. The TGA decomposition curve of silylated MSN particles (MSN_s) after calcination at 450°C (MSN_{s'}) shows the appearance of a small weight loss about 550 °C attributed to the decomposition of methyl groups to form siloxane bridge.

Fig. S2: FT-IR spectra of (a) as-made MSN, (b) MSNs and (c)TiMSNs'.

Fig. S3: N₂ adsorption-desorption isotherms at 77K of calcined materials (a) Pd₁MSN, (b) Pd_{0.2}MSN, (c) Pd_{0.2}TiMSN, (d) Pd₁TiMSN, (e) Pd₁TiMSN_s, and (f) Pd₁TiMSNsc.

Fig. S4: TEM images of (a) $Pd_{0.2}TiMSN$ and (b) Pd_1TiMSN catalysts.

Fig. S5: Stability test at 500°C of catalysts (A) Pd₁TiMSN, Pd_{0.2}TiMSN, Pd₁MSN and Pd_{0.2}MSN and (B) Pd₁TiMSN, Pd₁TiMSN_s and Pd₁TiMSN_{sc}.

Table S1: H/Pd molar ratio of hydrogen consumed by reduction or by formation of hydride between 25 and 80 °C from Temperature programmed reduction (TPR) and tentative distribution of PdH₂, Si-H and Ti³⁺.

catalysts	Pd^a (mmol g^{-1})	$H_2 \text{ consumption}^{b}$ (mmol g ⁻¹)	H/Pd ^c	molar distribution per Pd of H spill over / PdH ₂ / Ti ^{3+ d}
Pd _{0.2} MSN	0.019	0.042	4.4	2.4 / 1 / 0
Pd _{0.2} TiMSN	0.019	0.055	5.8	2.4 / 1 / 2.4
Pd ₁ MSN	0.103	0.383	7.4	5.4 / 1 / 0
Pd ₁ TiMSN	0.103	0.307	5.6	2.4 / 1 / 2.2
Pd ₁ TiMSN _S	0.094	0.239	5.1	2.4 / 1 / 1.7

a) Pd content from chemical analysis

b) H_2 consumption from the area integration of TCD signal mesured between 50 to 75°C;

c) molar ratio of hydrogen atoms consumed per palladium atoms

d) molar ratio of Si-H, Ti^{3+} ions species calculated assuming that, i) at 25°C PdO particles are totally reduced into metallic Pd⁰ particles, ii) yielding first hydride PdH₂ above 25°C followed by reduction of the support consumption of the hydride forming Si-H from surface silanol groups, Si-OH and Ti³⁺ ions in the presence of TiO_x anchoring subnano islands.