Supplementary Information

Development of a DNA biosensor based on MCM41 modified screen-printed graphite electrode for the study of short sequence of p53tumor suppressor genein hybridization and its interaction with flutamide drug using hemin as the electrochemical label

Jahan Bakhsh Raoof*a, Zahra Bagheryana, Ayemeh Bagheri Hashkavayia,b

^aEletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

^bDepartment of Chemical Industry, Faculty of Alzahra, Bushehr Branch, Technical and Vocational University (TVU), Bushehr, Iran **Table S1.** Comparison of the analytical performance between the proposed sensor and other electrochemical detection methods for flutamide.

Sensing surface	Method	LR	LOD	Ref.
Gold electrode	DPV	6 to 60 μM and 100–600 μM	1.8 μM	[1]
Ag nanoparticle decorated reduced graphene oxide	DPV	0.1 to 0.3 mM	1.16 μM.	[2]
Boron-doped diamond electrode	DPV	0.99–42.9 μM	0.42 μM	[3]
mercury electrode	DPV		0.19 µM	[4]
Ag nanoparticles/ glassy carbon electrode	DPV	10–1000 μM	9.33µM	[5]
Carbon screen printed electrode	DPV	0.7 to 10 μM	0.1 μΜ	This work

1. Mehrabi, A., Rahimnejad, M., Mohammadi, M., & Pourali, M. (2019). Electrochemical detection of flutamide with gold electrode as an anticancer drug. *Biocatalysis and Agricultural Biotechnology*, **22**, 101375.

2. Banerjee, S., Mondal, S., Madhuri, R., & Sharma, P. K. (2017, May). Electrochemical performance of Ag nanoparticle decorated reduced graphene oxide in determination of anticancer drug flutamide. In *AIP Conference Proceedings* (Vol. 1832, No. 1, p. 050067). AIP Publishing.

3. Švorc, Ľ., Borovska, K., Cinková, K., Stanković, D. M., &Planková, A. (2017). Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. *ElectrochimicaActa*, *251*, 621-630.

4. Hammam, E., El-Desoky, H. S., El-Baradie, K. Y., &Beltagi, A. M. (2004). Three validated stripping voltammetric procedures for determination of the anti-prostate cancer drug flutamide in tablets and human serum at a mercury electrode. *Canadian journal of chemistry*, *82*(9), 1386-1392.

5. Ahmadi, F., Raoof, J. B., Ojani, R., Baghayeri, M., Lakouraj, M. M., &Tashakkorian, H. (2015). Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide. *Chinese Journal of Catalysis*, *36*(3), 439-445.