Supplementary Information

MOF-derived NiO-NiCo₂O₄@PPy hollow polyhedron as a sulfur

immobilizer for lithium-sulfur batteries

Fengchao Xu, Bo Jin*, Huan Li, Wentao Ju, Zi Wen, Qing Jiang

Key Laboratory of Automobile Materials, Ministry of Education, and College of

Materials Science and Engineering, Jilin University, Changchun 130022, China

E-mail: jinbo@jlu.edu.cn (B. Jin)

Figure S1. FESEM image of ZIF-67.

Figure S2. FESEM image of NiO-NiCo $_2O_4$ polyhedron.

Figure S3. FESEM image of NiO-NiCo₂O₄@PPy.

Figure S4. XRD pattern of the as-synthesized ZIF-67.

Figure S5. XRD patterns of (a) S and (b) NiO-NiCo₂O₄.

Figure S6. (a) C 1s, (b) O 1s, (c) Co 2p and (d) Ni 2p spectra of S/NiO-NiCo₂O₄@PPy.

Figure S7. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution curve of NiO-NiCo₂O₄@PPy composite.

Figure S8. CV curves of (a) S and (b) S/NiO-NiCo₂O₄.

Figure S9. Cycling performance of NiO-NiCo₂O₄@PPy at 335 mA g^{-1} .

Figure S10. Charge-discharge profiles of (a) S and (b) $S/NiO-NiCo_2O_4$ at 0.2 C. Charge-discharge profiles of (c) S and (d) $S/NiO-NiCo_2O_4$ at various current densities from 0.1 to 2 C in the voltage range of 1.7-2.8 V.

Figure S11. UV-Vis spectra of Li_2S_6 in DME/DOL, PPy+ Li_2S_6 in DME/DOL, NiO-NiCo₂O₄+ Li_2S_6 in DME/DOL, and NiO-NiCo₂O₄@PPy+ Li_2S_6 in DME/DOL. Inset: photographs of sealed vials of Li_2S_6 in DOL/DME and Li_2S_6 in DOL/DME after being in contact with PPy, NiO-NiCo₂O₄, and NiO-NiCo₂O₄@PPy for 5 h.

Figure S12. Photographs of separators of batteries with pure sulfur and S/NiO-NiCo₂O₄@PPy after cycling, compared to photograph of separator before cycling (blank).

Figure S13. SEM images of S/NiO-NiCo₂O₄ cathode (a) before cycle and (b) after 100 cycles at 0.2 C. SEM images of S cathode (c) before cycle and (d) after 100 cycles at 0.2 C.

Materials	Capacity (mAh g ⁻¹)	Current density	Sulfur content	Areal loading (mg cm ⁻²)	Cycle	Ref.
S-PPy-based sandwich electrode	383	0.1 C	—	—	500	[1]
S/PPy	613	0.1 C			50	[2]
	475	1 C			50	
NiCo ₂ O ₄ /S	601	0.5 C	27%		200	[3]
S-Co ₃ O ₄ nanotubes	538	0.2 C	78%	—	100	[4]
Co ₃ O ₄ /S/ACNTs	496	0.5 C	58.73%	1.5	550	[5]
S/NiO-NiCo ₂ O ₄ @PPy	641	0.2 C	61.5%	2	100	This
	411	1 C			200	work

Table S1. Comparison of the related electrodes with this work.

References

- 1. M. R. Kaiser, Z. J. Han and J. Z. Wang, J. Power Sources, 2019, 437, 226925.
- 2. G. G. Yuan and H. D. Wang, J. Energy Chem., 2014, 23, 657.
- A. Iqbal, Z. A. Ghazi, A. M. Khattak and A. Ahmad, J. Solid State Chem., 2017, 256, 189.
- 4. J. X. Wang, C. Wang and M. M. Zhen, Chem. Eng. J., 2019, 356, 1.
- R. P. Liu, F. Guo, X. F. Zhang, J. L. Yang, M. Y. Li, M. M. Wu, H. Liu, M. Feng and L. Zhang, ACS Appl. Energy Mater., 2019, 2, 1348.