Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Supporting Information

An efficient CO₂ fixation reaction with epoxides catalysed by *in situ* formed blue vanadium catalyst from dioxovanadium(+5) complex: Moisture enhanced and atmospheric oxygen retarded catalytic activity

Rakhimoni Borah, Naranarayan Deori and Sanfaori Brahma*

Fig. S1 ¹H NMR spectrum of [VO₂(HSal-ac)], **2** in DMSO- d_6 + 2 drops of methanol- d_4 (Asterisks represents solvent impurities).

Fig. S2 FT-IR spectrum of [NH₄][VO₂(Sal-ac)], 1.

Fig. S3 FT-IR spectrum of [VO₂(HSal-ac)], 2.

Fig. S4 UV/Vis spectrum of NH₄[VO₂(Sal-ac)], 1 in methanol.

Crystal data	NH ₄ [VO ₂ (Sal-ac)], 1	VO ₂ (HSal-ac), 2	VO ₂ (HSal-ac), 3
Formula	$C_9H_{12}N_3O_4V$	$C_9H_9N_2O_4V$	$C_9H_9N_2O_4V$
Т, (К)	296(2)	296(2)	273(2)
Formula weight	277.16	260.12	260.12
Color	Yellow	Brown	Yellow
Crystal system	Orthorombic	Monoclinic	Monoclinic
Space group	P212121	<i>P</i> 2 ₁ /n	P 2 ₁ /n
<i>a,</i> Å	6.4268(4)	7.4612(9)	7.3510(4)
<i>b,</i> Å	13.3674(10)	11.9060(14)	11.8967(7)
<i>c,</i> Å	13.5577(10)	11.1849(13)	11.1856(6)
lpha , deg	90	90	90
β , deg	90	99.077(7)	99.047(2)
γ, deg	90	90	90
<i>v,</i> Å ³	1164.74(14)	981.1(2)	966.04(9)
Radiation (λ, Å)	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)
Ζ	4	4	4
d _{calcd} , g.cm ⁻³	1.581	1.761	1.789
F(000)	568	528	528
μ, mm ⁻¹	0.858	1.010	1.026
No. of unique data	2274	1924	1896
No. of parameters, refined	162	146	141
GOF on F ²	1.059	1.086	1.116
R1 ^a [<i>I</i> > 2σ(<i>I</i>)]	0.0241	0.0364	0.0449
R1ª (all data)	0.0246	0.0406	0.0568
wR2 ^b (all data)	0.0693	0.1088	0.1039
Largest diff. peak and hole, e. Å ⁻³	0.267 and -0.247	0.387 and -0.507	0.785 and -0.446
$\mathbf{a}^{R1} = \frac{\sum Fo - Fc }{\sum Fo }, \mathbf{b}^{WR}$	$2 = \sqrt{\frac{\sum \left[w\left(Fo^2 - Fc^2\right)^2\right]}{\sum \left[w\left(Fo^2\right)^2\right]}}$		

Table S1. Crystal data and data collection parameters for complexes 1, 2 and 3.

Bond distance (Å)	NH ₄ [VO ₂ (Sal-ac)],	[VO ₂ (HSal-ac)],	[VO ₂ (HSal-ac)], 3
	1	2	
V-O(3)	1.619(2)	1.6315(19)	1.639(2)
V-O(4)	1.646(2)	1.601(2)	1.614(2)
V-O(1)	1.9714(19)	2.0181(18)	2.019(2)
V-O(2)	1.893(2)	1.8742(17)	1.879(2)
V-N(1)	2.128(2)	2.1682(19)	2.169(3)
O(1)-C(1)	1.305(3)	1.260(3)	1.258(4)
N(2)-C(1)	1.296(3)	1.312(3)	1.322(4)
N(1)-C(3)	1.297(4)	1.295(3)	1.300(4)
N(1)-N(2)	1.406(3)	1.379(3)	1.386(3)
Bond angle (°)			
O(3)-V-O(4)	109.54(13)	109.37(13)	109.23(13)
O(1)-V-O(2)	150.56(9)	150.81(8)	151.05(9)

Table S2. Selected bond lengths (Å) and bond angles (°) for $NH_4[VO_2(Sal-ac)]$, **1**, $[VO_2(HSal-ac)]$, **2** and $[VO_2(HSal-ac)]$, **3** (obtained from the blue reaction mixture after reaction).

Fig. S5 Crystal packing diagram of NH₄[VO₂(Sal-ac)], 1. (H atoms are excluded for clarity).

Fig. S6 Crystal packing diagram of VO₂(HSal-ac), 2. (H atoms are excluded for clarity).

General procedure for catalytic reactions

A mixture of epoxide, Vanadium catalyst, **1** (1 mol %) and Tetrabutylammonium bromide (2 mol %) were loaded into a 100 mL stainless steel autoclave equipped with a magnetic stirring bar. The appropriate pressure of CO_2 was then dosed into the reactor, and heating and stirring were started to achieve the desired temperature. After the desired time, the autoclave was vented carefully and a sample was taken immediately for the determination of conversion by ¹H NMR spectroscopy.

Fig. S7 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 91%]

Fig. S8 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 2 hours; ¹H NMR yield, 86%].

Fig. S9 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **2** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 2 hours; ¹H NMR yield, 77%].

Fig. S10 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 45 °C; Pressure (CO₂), 5 bar; Time, 14 hours; ¹H NMR yield, 99 %] (Asterik represents solvent impurity).

Fig. S11 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 45 °C; Pressure (CO₂), 5 bar; Time, 14 hours; ¹H NMR yield, 83 %] (Asterik represents solvent impurity).

Fig. S12 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **moistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 95 %] (Asterik represents solvent impurity).

Fig. S13 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst (0 mol%); **moistened TBAB** (2 mol%); Temperature, 45 °C; Pressure (CO₂), 5 bar; Time, 15 hours; ¹H NMR yield, 40%].

Fig. S14 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst (0 mol%); **unmoistened TBAB** (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 24%].

Fig. S15 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst (0 mol%); **moistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 37%]. (Asterik represents solvent impurity).

Fig. S16 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); **unmoistened** TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 75%].

Fig. S17 ¹H NMR spectrum of reaction mixture in CDCl₃. [Catalyst **1** (1 mol%); moistened TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; ¹H NMR yield, 60%. Reaction was done without purging the reaction vessel with CO₂].

Fig. S18 ¹H NMR spectrum of styrene carbonate in CDCl₃ purified by column chromatography. [Catalyst **1** (1 mol%); moistened TBAB (2 mol%); Temperature, 60 °C; Pressure (CO₂), 5 bar; Time, 4 hours; yield, 86 %.

Fig. S19 ¹³C NMR spectrum of chloropropylene carbonate in CDCl₃.

Fig. S20 IR spectrum of Chloropropylene Carbonate in KBr.

Fig. S21 Crystal packing diagram of VO₂(HSal-ac), 3. (H atoms are excluded for clarity).