Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Ag₂S-Glutathione Quantum Dots for NIR Image Guided Photothermal Therapy

Mahshid Hashemkhani ^a, Kubra Bilici ^a, Abdullah Muti ^b, Alphan Sennaroğlu^{a, b, c}, Havva Yağci Acar*^{a, c, d}

^a Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey

^b Koc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey

^c Koc University, Departments of Chemistry, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey

^d Koc University, KUYTAM, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey

*Corresponding Author:

Havva Yağci Acar

Address: Departments of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey E-mail: fyagci@ku.edu.tr; Fax: +902123381559; Tel: +902123381742

Fig. S1 Absorbance calibrated photoluminescence spectra of (A) QD5 synthesized with TAA at 50 °C at different time, (B) FTIR spectrum of QD2 and glutathione and (C) Thermogravimetric analysis (TGA) of QD2.

Table S1 Time dependent changes in the particle properties*

Time	$\lambda_{abs(max)}^{a}$ (nm)	Size ^b (nm)	λ _{em(max)} (nm)	Dh-number ^c (nm)	Dh-intensity ^d
					(nm)
1 st day	923	3.01	891	6.7	3.8 ± 0.1
1 st month	923	3.01	891	12.8	4.1 ± 0.2
9 th month	946	3.09	891	30.2	4.0 ± 0.1
1 year	946	3.09	897	48.9	4.6 ± 0.4

 * QD2 was used for this experiment. a Absorbance onset. b Crystal diameter calculated using the Brus equation. c

Hydrodynamic diameter measured by DLS and reported as the number average. ^d Hydrodynamic diameter measured by DLS and reported as the intensity average.

Photothermal efficiency calculation:

The photothermal efficiency was calculated by using following formula

$$\eta = \frac{ha(T_{max} - T_{amb}) - Q_{dis}}{P(1 - 10^{-A_{795nm}})} \qquad (Eq. S1)$$

.

where h is the heat transfer coefficient, a is the irradiated area, T_{max} is the equilibrium temperature, T_{amb} is the ambient temperature, and Q_{dis} is the heat dissipated due to light absorption in the polystyrene cell. P and A_{795nm} appearing in the denominator represent the laser power and absorbance of the Ag₂S-GSH QDs, respectively, at 795 nm.

ha can be calculated by using the following formulas:

$$ha = \frac{\sum m_i C_{p,i}}{\tau_s}$$
$$t = -\tau_s In\theta$$
$$\theta = \frac{T - T_{amb}}{T_{max} - T_{amb}}$$

Above, m, C_p , t, τ_s are the mass of sample, the thermal capacity, cooling time after irradiation, and the sample system time constant, respectively. The quantity Q_{dis} was determined by using the following formula which accounts for the absorption of the laser power within water and the polystyrene cuvette:

$$Q_{dis} = ha(T_{max,water} - T_{amb,water})$$

The values of T_{max} , T_{amb} , τ_s , $m_{cuvette}$, m_{sample} , $C_{cuvette}$, C_{water} were 45 °C, 25 °C, 220.8 sec, 1.9110 g, 0.7513 g, 1.4 J/g C and 4.186 1.4 J/g C, respectively. Therefore, ha was calculated as 26.4 mW/C. Q_{dis} was determined to be 0 because there was no significant temperature change in the water at these pump power levels. By substituting these parameters into Equation S1, the PTT efficiency was determined to be 80%.