Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## **Electronic Supporting Information**

### **One-pot Synthesis of Benzotripyrrole Derivatives from 1H-pyrroles**

Pandeeti Obaiah, B. Sathish Kumar and Pradeepta K. Panda\*

### **Table of Contents**

| 1. | Instrumentation and reagents                         | S2      |
|----|------------------------------------------------------|---------|
| 2. | Synthesis                                            | S3-S10  |
| 3. | <sup>1</sup> H, <sup>13</sup> C NMR and HRMS spectra | S11-S34 |
| 4. | Reaction monitoring of BTP <b>3a</b>                 | S35     |
| 5. | X-ray crystal structures and refinement data         | S36-S38 |
| 6. | Absorption Spectrum and Electrochemical study        | S39     |
| 7. | Computational study                                  | S40-S48 |
| 8. | TGA-DTA profiles                                     | S49     |
| 9. | References                                           | S50     |

### 1. Instrumentation and reagents:

Melting points were determined by MR-Vis<sup>+</sup> visual melting point range apparatus from LABINDIA instruments private limited. IR spectra were recorded on NICOLET iS5. LCMS analysis were carried out by Shimadzu-LCMS-2010 mass spectrometer and HRMS data were obtained with Bruker Maxis spectrometer and XEVO-G2XSQTOF#YEA1155. NMR spectra were recorded on Bruker 400 and 500 MHz FT-NMR spectrometers operating at ambient temperature. TMS was used as internal standard for <sup>1</sup>H NMR spectra. UV-Visible spectrum was recorded on Perkin Elmer Lambda-35 spectrometer. Spectroscopic grade solvent was used for absorbance measurement. Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements were done using CH Instruments Electrochemical analyzer and electrodes were purchased from CH Instruments Inc. All measurements were performed in dichloromethane under flow of nitrogen and 0.1M tetrabutylammonium hexafluorophosphate (TBAPF<sub>6</sub>) used as a supporting electrolyte. Glassy carbon as working electrode, platinum wire as counter electrode and Ag/AgCl in (1M) KCl as reference electrode were used. The redox potentials were referenced vs. sat. calomel electrode, SCE (0.48V for Fc<sup>+</sup>/Fc couple vs SCE). All cyclic voltammetric data were recorded at 100 mV/s scan rate.

Crystallographic data for **3a** and **8** were collected on BRUKER APEX-II CCD microfocus diffractometer, Mo-K<sub> $\alpha$ </sub> ( $\lambda = 0.71073$  Å) radiation was used to collect X-ray reflections from their single crystals. Data reduction was performed using Bruker SAINT software.<sup>S1</sup> Intensities for absorption were corrected using and SADABS 2014/5,<sup>S2</sup> refined using SHELXL-2014/7<sup>S3</sup> with anisotropic displacement parameters for non-H atoms. Hydrogen atoms on O and N were experimentally located in difference electron density maps. All C–H atoms were fixed geometrically using HFIX command in SHELX-TL. A check of the final CIF file using PLATON<sup>S4</sup> did not show any missed symmetry. DTA-TG analysis was done on Perkin Elmer STA-6000.

Crystallographic data (including the structure factor) for structures **3a** and **8** in this paper have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1935235-1935236. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44(0)-1223-336033 or e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

Commercially available solvents were distilled before use. Reagents were purchased from Sigma Aldrich, Merck and Spectrochem and used as received without further purification unless otherwise stated. Solvents for the reactions were dried according to literature methods.

### 2. Synthesis:

### 2.1) Synthesis of Triethyl 2,5,8-trimethyl-4,7-dihyro-1H-dipyrrolo[2,3-e:2',3'-g]indole-3,6,9-tricarboxylate (3a):

### **Protocol 1:**



To ethyl 2-methyl-1H-pyrrole-3-carboxylate (**1a**)<sup>S5a,S5d</sup> (100 mg, 0.65 mmol) in DCM (5 mL), NBS (128 mg, 0.72 mmol) solution in DCM (10 mL) was added under N<sub>2</sub> atmosphere at room temperature and was refluxed for 24 h. The reaction mixture was cooled to room temperature and quenched by addition of aq. NaHCO<sub>3</sub> solution. Then the organic layer was separated and the aq. layer was extracted with DCM (2 x 10 mL). The combined organic layers were dried over anhyd. Na<sub>2</sub>SO<sub>4</sub> and concentrated in rotary evaporator under reduced pressure. Finally the crude product was purified by silica gel column chromatography using EtOAc: hexane (5:95) as an eluent to obtain the desired product **3a** as white color solid after drying (12 mg, 12 %).

Melting point: 260-262 °C; IR (KBr) (cm<sup>-1</sup>): 3320, 2956, 1659, 1431; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 11.36 (s, 3H), 4.42 (q, *J* = 7.1 Hz, 6H), 2.77 (s, 9H), 1.46 (t, *J* = 7.1 Hz, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 168.1, 137.8, 124.5, 109.1, 103.4, 15.3, 14.6; HRMS- (ESI+) m/z: calculated for C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O<sub>6</sub> [M+H]<sup>+</sup>: 454.1978; found: 454.1978.

#### **Protocol 2:**



To ethyl 4,5-diiodo-2-methyl-1H-pyrrole-3-carboxylate (**11**) <sup>S5b</sup> (100 mg, 0.25 mmol) in toulene (15 mL), Cu (157 mg, 2.47 mmol) was added under N<sub>2</sub> atmosphere at room temperature and was refluxed for 24 h. After complete consumption of starting material, the reaction mixture was cooled to room temperature. The organic layer was separated and the residue was washed with DCM (2 x 10 mL). The combined organic layers were concentrated in rotary evaporator under reduced pressure. Finally the crude product was purified by silica gel column chromatography by using EtOAc: hexane (5:95) as an eluent, which resulted the product as white solid (2 mg, 2 %).

#### **Protocol 3:**



To ethyl 4,5-dibromo-2-methyl-1H-pyrrole-3-carboxylate (12)  $^{S5c}$  (100 mg, 0.25 mmol) in DMF (1 mL), Cu (255 mg, 4.02 mmol) was added under N<sub>2</sub> atmosphere at room temperature and was heated for 30 min at 300 °C . The reaction mixture was cooled to room temperature and TLC confirmed the complete consumption of starting material, but there was no desired BTP **3a**.

# 2.2) Attempted synthesis of Triethyl 3,6,9-tributyl-4,7-dihydro-1H-dipyrrolo[2,3-e:2',3'-g]indole-2,5,8-tricarboxylate (10):



To ethyl 3-butyl-1H-pyrrole-2-carboxylate (9)<sup>S6</sup> (100 mg, 0.51 mmol) in DCM (5 mL), NBS (128 mg, 0.72 mmol) solution in DCM (10 mL) was added under N<sub>2</sub> atmosphere at room temperature and was refluxed for 24 h. The reaction mixture was cooled to room temperature and quenched by addition of aq.NaHCO<sub>3</sub>. TLC showed complete consumption of the starting material but there was no formation of desired BTP (10).

# 2.3) Synthesis of Tribenzyl 2,5,8-trimethyl-4,7-dihydrodipyrrolo[2,3-e:2',3'-g]indole-3,6,9-tricarboxylate (3b):

#### **Protocol 1:**



The same synthetic procedure for **3a** was followed; 5 mg product (**3b**) was obtained from 100 mg starting material (**1b**)  $^{[S5a]}$  with 5% yield (white solid).

Melting point: 201-203 °C; IR (KBr) (cm<sup>-1</sup>): 3345, 2929, 1671, 1424; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm):11.25 (s, 3H), 7.49 (d, J = 7 Hz, 2H), 7.42(t, J = 7 Hz, 3H), 7.37 (d, J = 7 Hz, 2H) 5.43 (s, 6H), 2.67 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm):167.60, 138.7, 136.6, 128.8, 128.3, 128.2, 103.2, 66.2, 15.4; HRMS (ESI+) : m/z : calculated for C<sub>39</sub>H<sub>34</sub>N<sub>3</sub>O<sub>6</sub> [M+H]<sup>+</sup>: 640.2447; found: 640.2430.

### **Protocol 2:**



To sodium metal (25 mg) in benzyl alcohol (2 mL), BTP **3a** (100 mg, 0.22 mmol) in benzyl alcohol (3 mL) was added under N<sub>2</sub> atmosphere at room temperature and was stirred at 100 °C for 2 h under -10 mmHg pressure. Subsequently benzyl alcohol was removed under reduced pressure and residue was dissolved in DCM. The DCM layer was washed with water, passed through anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness under reduced pressure. Crude product was purified by silicagel column chromatography by using EtOAc: hexane (3:7) as an eluent, which resulted the desired product as white solid (85 mg, 60 %).

2.4) Synthesis of Tri-tert-butyl 2,5,8-trimethyl-4,7-dihydro-1H-dipyrrolo[2,3-e:2', 3;-g]indole-3,6,9-tricarboxylate (3c):



The same synthetic procedure for **3a** was followed; 2 mg product (**3c**) was obtained from 100 mg of starting material  $1c^{55a}$  with 2% yield (white solid).

IR (KBr) (cm<sup>-1</sup>): 3312, 2921, 1666, 1462; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm):11.39 (s, 3H), 2.75 (s, 9H), 1.67 (s, 27H); HRMS (ESI+) : m/z : calculated for C<sub>30</sub>H<sub>40</sub>N<sub>3</sub>O<sub>6</sub> [M+H]<sup>+</sup>: 538.2917; found: 538.2918.

2.5) Synthesis of Ethyl 5-bromo-2-methyl-1H-pyrrole-3-carboxylate (5a):<sup>S7</sup>

 $(^{87}$  = The product **5a** was reported recently by different procedure).



To ethyl 2-methyl-1Hpyrrole-3-carboxylate **1a** (100 mg, 0.65 mmol) in THF (50 mL), NBS (116 mg, 0.65 mmol) was added under N<sub>2</sub> atmosphere at 0 °C and stirred for 1 h. After complete consumption of starting material, the reaction was quenched by addition of aq.NaHCO<sub>3</sub> solution. Then the organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 10 mL). Then organic layers were combined, dried over anhyd. Na<sub>2</sub>SO<sub>4</sub>, and concentrated using the rotary evaporator under reduced pressure. Finally, the crude product was purified by silica gel column chromatography by using EtOAc: hexane (15:85) as an eluent, which resulted the desired product as white solid (110 mg, 73 %).

IR (KBr) (cm<sup>-1</sup>): 3256, 2980, 1673, 1445; <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN  $\delta$  in ppm): 9.68 (s, 1H), 6.38 (s, 1H), 4.18 (q, *J* = 7 Hz, 2H), 2.42 (s, 3H), 1.27 (t, *J* = 7 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>CN,  $\delta$  in ppm): 164.0, 137.7, 114.1, 112.1, 96.9, 60.2, 14.7, 12.8; HRMS (ESI+) : m/z : calculated for C<sub>8</sub>H<sub>11</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup>: 231.9973; found: 231.9984.

#### 2.6) Synthesis of Benzyl 5-bromo-2-methyl-1Hpyrrole-3-carboxylate (5b):



The same synthetic procedure for **5a** was followed; 95 mg product (**5b**) was obtained from 100 mg starting material (**1b**) with 70% yield (white solid).

IR (KBr) (cm<sup>-1</sup>): 3269, 3030, 1667, 1431; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 8.34 (s, 1H), 7.4 (d, *J* = 7.2 Hz, 2H), 7.4 (t, *J* = 7 Hz, 3H), 7.3 (d, *J* = 7 Hz, 2H), 6.54 (d, *J* = 2.8 Hz, 1H), 5.27 (s, 2H), 2.5 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 164.4, 136.8, 136.7, 128.6, 128.1, 128.0, 113.4, 112.3, 96.5, 65.6, 13.2; HRMS (ESI+): m/z: calculated for C<sub>13</sub>H<sub>13</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup>: 294.0129; found: 294.0129.

#### 2.7) Synthesis of tert-butyl 5-bromo-2-methyl-1Hpyrrole-3-carboxylate (5c):



The same synthetic procedure for **5a** was followed; 90 mg product (**5c**) was obtained from 100 mg starting material (**1c**) with 70% yield (white solid).

IR (KBr) (cm<sup>-1</sup>): 3176, 2969, 1649, 1453; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 8.35 (s, 1H), 6.44 (d, *J* = 2.9 Hz, 1H), 2.46 (s, 3H), 1.54 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 164.2, 135.8, 115.3, 112.3, 86.0, 79.9, 28.6, 13.4; HRMS (ESI+): m/z: calculated for C<sub>10</sub>H<sub>14</sub>BrNNaO<sub>2</sub> [M+Na]<sup>+</sup>: 282.0105; found: 282.0100.

#### 2.8) Attempted synthesis of bipyrrole 2:



To ethyl 2-methyl-1Hpyrrole- 3-carboxylate **1a** (100 mg, 0.65 mmol) in DCM (20 mL), PIFA (200 mg, 1.30 mmol) and TMSBr (0.11 mL, 0.87 mmol) were added under N<sub>2</sub> atmosphere at low temperature i.e. -40 °C and was stirred overnight. After complete consumption of starting material, the reaction was stopped by addition of aq.NaHCO<sub>3</sub> solution. Then the organic layer was separated and the remaining crude compound was extracted with DCM (2 x 10 mL). Then the organic layers

were combined, dried over anhyd. Na<sub>2</sub>SO<sub>4</sub>, and concentrated using rotary evaporator under reduced pressure. Finally the crude product was purified by silica gel column chromatography using EtOAc: hexane (1:9) as an eluent, which resulted the 1<sup>st</sup> fraction as BTP **3a** 5 mg (5 %), along with the 2<sup>nd</sup> fraction as compound **4**, a white solid 60 mg (15 %).

Compound **4**: Melting point 266-267 °C; IR (KBr), (cm<sup>-1</sup>): 3213, 2979, 1652, 1441; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 11.51 (s, 1H), 8.30 (s, 1H), 6.90 (d, *J* = 2.15Hz, 1H), 6.64 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.6 (s, 3H), 2.5 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 167.6, 166.2, 136.4, 133.9, 125, 118.8, 113.7, 111.9, 105.8, 60.5, 59.3, 15.5, 14.7, 14.6, 13.7; HRMS (ESI+) : m/z : calculated for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> : 305.1501; found 305.1502.

2.9) Synthesis of 5-bromo-4-iodo-2-methyl-1H-pyrrole-3-carboxylate (8):



To ethyl 2-methyl-1Hpyrrole-3-carboxylate **1a** (100 mg, 0.65 mmol), NBS (116 mg, 0.65 mmol) in THF (30 mL) was added at 0 °C under N<sub>2</sub> atmosphere and then stirred for 1 h. Subsequently, to the same reaction mixture NIS (146 mg, 0.65 mmol) was added, and stirred for additional 2 h. Then the reaction was quenched with aq. NaHCO<sub>3</sub> solution. The organic layer was separated and the aq. layer was extracted with EtOAc (2 x 10 mL). Then combined organic layer was dried over anhyd. Na<sub>2</sub>SO<sub>4</sub>, and concentrated using rotary evaporator under reduced pressure. Finally the crude product was purified on silica gel column using EtOAc : Hexane (1:9) as an eluent, which resulted the product as white solid (150 mg, 60 %).

IR (cm<sup>-1</sup>): 3213, 2984, 1671, 1436; <sup>1</sup>H NMR data (500 MHz , CDCl<sub>3</sub>,  $\delta$  in ppm): 8.54 (s, 1H), 4.3 (q, *J* = 9 Hz, 2H), 2.5 (s, 3H), 1.37 (t, *J* = 9 Hz, 3H); <sup>13</sup>C NMR Data (500 MHz , CDCl<sub>3</sub>,  $\delta$  in ppm): 163.3, 137.8, 114.9, 105.8, 68.5, 60.2, 14.6, 14.6, 14.4; HRMS (ESI+) m/z: calculated for C<sub>8</sub>H<sub>10</sub>BrINO<sub>2</sub>[M+H]<sup>+</sup>: 357.8939; found: 357.8938.

### Scheme S1:



### Scheme S2:



### Scheme S3:



### Scheme S4:



| entry | substrate  | Reagent<br>(equiv) | solvent           | Time<br>(h) | Temp   | compound   | Yield<br>(%) |
|-------|------------|--------------------|-------------------|-------------|--------|------------|--------------|
| 1     | <b>1</b> a | NBS<br>(1.1)       | DCM               | 24          | reflux | <b>3</b> a | 12           |
| 2     | <b>1</b> a | NBS<br>(1.1)       | CHCl <sub>3</sub> | 24          | reflux | <b>3</b> a | 10           |
| 3     | <b>1</b> a | NBS<br>(1.1)       | DCE               | 24          | reflux | <b>3</b> a | 10           |
| 4     | <b>1</b> a | NBS<br>(1.1)       | CCl <sub>4</sub>  | 24          | reflux | <b>3</b> a | 2            |
| 5     | 1b         | NBS<br>(1.1)       | DCM               | 24          | reflux | <b>3</b> b | 5            |
| 6     | 1c         | NBS<br>(1.1)       | DCM               | 24          | reflux | 3c         | 2            |
| 7     | 5a         | -                  | DCM               | 24          | reflux | <b>3</b> a | 10           |
| 8     | 5b         | -                  | DCM               | 24          | reflux | <b>3</b> b | 5            |
| 9     | 5c         | -                  | DCM               | 24          | reflux | 3c         | trace        |

 Table S1: Optimization of reaction conditions for BTPs formation.

## 3. <sup>1</sup>H, <sup>13</sup>C NMR and HRMS spectra:



Fig. S1 <sup>1</sup>H NMR spectrum of 3a in CDCl<sub>3</sub>.



Fig. S2 <sup>13</sup>C NMR spectrum of 3a in CDCl<sub>3</sub>.

#### Analysis Info

| Analysis Info          |                                             | Acquisition Date | 2/6/2013 1 | 1:54:19 AM |
|------------------------|---------------------------------------------|------------------|------------|------------|
| Analysis Name          | D:\Data\2013\Dr.PK.PANDA\FEB\POH-71-35-1R.d |                  |            |            |
| Method                 | tune_low_Pos-R2.m                           | Operator         | Rajesh Var | shisth     |
| Sample Name<br>Comment | POH-71-35-1R-CHCL3-ACN                      | Instrument       | maXis      | 10138      |

#### Acquisition Parameter



**Fig. S3** HRMS spectrum of **3a** (M+H)<sup>+</sup>; Calculated for C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O<sub>6</sub>: 454.1978; found: 454.1978.



**Fig. S4** HRMS spectrum of crude reaction mixture: Calculated mass  $[M+H]^+$  for trimer BTP (**3a**), C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O<sub>6</sub>: 454.1978; found: 454.1978; calculated mass  $[M+H]^+$  for Tetramer, C<sub>32</sub>H<sub>37</sub>N<sub>4</sub>O<sub>8</sub>: 605.2611; found: 605.2610; calculated mass  $[M+H]^+$  for Pentamer, C<sub>40</sub>H<sub>46</sub>N<sub>5</sub>O<sub>10</sub>: 756.3245; found: 756.3232.



Fig. S5 <sup>1</sup>H NMR spectrum of 3b in CDCl<sub>3</sub>.



Fig. S6 <sup>13</sup>C NMR spectrum of 3b in CDCl<sub>3</sub>.



**Fig. S7** HRMS spectrum of **3b**  $(M+H)^+$ ; Calculated for  $C_{39}H_{34}N_3O_6 [M+H]^+$ : 640.2447; found: 640.2430.



**Fig. S8** <sup>1</sup>H NMR spectrum of **3c** in CDCl<sub>3</sub> (<sup>13</sup>C NMR data could not be recorded due to lack of stability).

### School of Chemistry University of Hyderabad



Fig. S9 HRMS spectrum of  $3c (M+H)^+$ ; Calculated for  $C_{30}H_{40}N_3O_6 [M+H]^+$ : 538.2917; found: 538.2918.



**Fig. S10** <sup>1</sup>H NMR spectrum of 5a in CD<sub>3</sub>CN.



**Fig. S11**  $^{13}$ C NMR spectrum of **5a** in CD<sub>3</sub>CN.



**Fig. S12** HRMS spectrum of **5a** (M+H)<sup>+</sup>; Calculated for C<sub>8</sub>H<sub>11</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup>: 231.9973; found: 231.9984.



Fig. S13 <sup>1</sup>H NMR spectrum of 5b in CDCl<sub>3</sub>.



Fig. S14 <sup>13</sup>C NMR spectrum of 5b in CDCl<sub>3</sub>.



**Fig. S15** HRMS spectrum of **5b** (M+H)<sup>+</sup>; Calculated for C<sub>13</sub>H<sub>13</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup>: 294.0129; found: 294.0129.



Fig. S16 <sup>1</sup>H NMR spectrum of 5c in CDCl<sub>3</sub>.



Fig. S17 <sup>13</sup>C NMR spectrum of 5c in CDCl<sub>3</sub>.



**Fig. S18** HRMS spectrum of **5c** [M+Na]<sup>+</sup>; Calculated for C<sub>10</sub>H<sub>14</sub>BrNaNO<sub>2</sub> [M+Na]<sup>+</sup>: 282.0105; found: 282.0100.



Fig. S19 <sup>1</sup>H NMR spectrum of 4 in CDCl<sub>3</sub>.



Fig. S20 <sup>13</sup>C NMR spectrum of 4 in CDCl<sub>3</sub>.



Fig. S21 HRMS spectrum of 4  $(M+H)^+$ ; Calculated for  $C_{16}H_{21}N_2O_4$   $[M+H]^+$ : 305.1501; found: 305.1502.



Fig. S22 <sup>1</sup>H NMR spectrum of 8 in CDCl<sub>3</sub>.



Fig. S23 <sup>13</sup>C NMR spectrum of 8 in CDCl<sub>3</sub>.



**Fig. S24** HRMS spectrum of **8** (M+H)<sup>+</sup>; Calculated for C<sub>8</sub>H<sub>10</sub>BrINO<sub>2</sub> [M+H]<sup>+</sup>: 357.8939; found: 357.8938.



Fig. S25 Reaction monitoring of BTP 3a in CDCl<sub>3</sub>.

4. X-ray crystal structures and refinement data:



**Fig. S26** ORTEP Pov-ray diagram of compound **8**; Thermal ellipsoids are scaled upto 35% probability level; Color code: grey: C, Blue: N, Red: O, Brown: Br, Violet: I and White: H.



**Fig. S27** ORTEP Pov-ray diagram of BTP **3a**; Thermal ellipsoids are scaled upto 50% probability level; Color code: grey: C, Blue: N, Red: O and White: H.

### Table S2: Crystallographic data of compound 8:

| Identification code                      | 8                                                   |                                 |  |  |
|------------------------------------------|-----------------------------------------------------|---------------------------------|--|--|
| Empirical formula                        | C <sub>8</sub> H <sub>9</sub> Br I N O <sub>2</sub> |                                 |  |  |
| Formula weight                           | 357.97                                              |                                 |  |  |
| Temperature                              | 299(2) K                                            |                                 |  |  |
| Wavelength                               | 0.71073 Å                                           |                                 |  |  |
| Crystal system                           | Monoclinic                                          |                                 |  |  |
| Space group                              | Рс                                                  |                                 |  |  |
| Unit cell dimensions                     | a = 9.9046(5)  Å                                    | $\alpha = 90^{\circ}$ .         |  |  |
|                                          | b = 8.2466(4)  Å                                    | $\beta = 105.4160(10)^{\circ}.$ |  |  |
|                                          | c = 14.0533(6)  Å                                   | $\gamma = 90^{\circ}$ .         |  |  |
| Volume                                   | 1106.56(9) Å <sup>3</sup>                           |                                 |  |  |
| Z                                        | 4                                                   |                                 |  |  |
| Density (calculated)                     | 2.149 Mg/m <sup>3</sup>                             |                                 |  |  |
| Absorption coefficient                   | 6.475 mm <sup>-1</sup>                              |                                 |  |  |
| F(000)                                   | 672                                                 |                                 |  |  |
| Crystal size                             | 0.18 x 0.12 x 0.10 mm <sup>3</sup>                  |                                 |  |  |
| Theta range for data collection          | 3.825 to 25.108°.                                   |                                 |  |  |
| Index ranges                             | -11<=h<=11, -9<=k<=9, -15<=                         | =l<=16                          |  |  |
| Reflections collected                    | 18333                                               |                                 |  |  |
| Independent reflections                  | 3616 [R(int) = 0.0455]                              |                                 |  |  |
| Completeness to theta = $25.108^{\circ}$ | 96.2 %                                              |                                 |  |  |
| Absorption correction                    | Semi-empirical from equivalen                       | ts                              |  |  |
| Max. and min. transmission               | 0.7459 and 0.7158                                   |                                 |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>         |                                 |  |  |
| Data / restraints / parameters           | 3616 / 2 / 239                                      |                                 |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.185                                               |                                 |  |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0424, wR2 = 0.1360                           |                                 |  |  |
| R indices (all data)                     | R1 = 0.0432, wR2 = 0.1371                           |                                 |  |  |
| Absolute structure parameter             | 0.5                                                 |                                 |  |  |
| Extinction coefficient                   | n/a                                                 |                                 |  |  |
| Largest diff. peak and hole              | 1.015 and -0.914 e.Å <sup>-3</sup>                  |                                 |  |  |

### Table S3: Crystallographic data of compound 3a:

| Identification code                      | <b>3</b> a                                  |                                 |  |  |
|------------------------------------------|---------------------------------------------|---------------------------------|--|--|
| Empirical formula                        | $C_{24} \ H_{27} \ N_3 \ O_6$               |                                 |  |  |
| Formula weight                           | 453.48                                      |                                 |  |  |
| Temperature                              | 100(2) K                                    |                                 |  |  |
| Wavelength                               | 0.71073 Å                                   |                                 |  |  |
| Crystal system                           | Triclinic                                   |                                 |  |  |
| Space group                              | <i>P</i> -1                                 |                                 |  |  |
| Unit cell dimensions                     | a = 7.5562(3) Å                             | $\alpha = 80.335(2)^{\circ}$ .  |  |  |
|                                          | b = 7.5770(3) Å                             | $\beta = 85.586(2)^{\circ}.$    |  |  |
|                                          | c = 19.0345(8)  Å                           | $\gamma = 86.0240(10)^{\circ}.$ |  |  |
| Volume                                   | 1069.37(8) Å <sup>3</sup>                   |                                 |  |  |
| Z                                        | 2                                           |                                 |  |  |
| Density (calculated)                     | 1.408 Mg/m <sup>3</sup>                     |                                 |  |  |
| Absorption coefficient                   | 0.102 mm <sup>-1</sup>                      |                                 |  |  |
| F(000)                                   | 480                                         |                                 |  |  |
| Crystal size                             | 0.28 x 0.24 x 0.18 mm <sup>3</sup>          |                                 |  |  |
| Theta range for data collection          | 2.708 to 27.565°.                           |                                 |  |  |
| Index ranges                             | -9<=h<=9, -9<=k<=9, -24<=l<                 | =24                             |  |  |
| Reflections collected                    | 53415                                       |                                 |  |  |
| Independent reflections                  | 4943 [R(int) = 0.0471]                      |                                 |  |  |
| Completeness to theta = $25.242^{\circ}$ | 99.9 %                                      |                                 |  |  |
| Absorption correction                    | Semi-empirical from equivalen               | ts                              |  |  |
| Max. and min. transmission               | 0.7459 and 0.7158                           |                                 |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                                 |  |  |
| Data / restraints / parameters           | 4943 / 0 / 316                              |                                 |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 0.810                                       |                                 |  |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0419, wR2 = 0.1150                   |                                 |  |  |
| R indices (all data)                     | R1 = 0.0535, wR2 = 0.1259                   |                                 |  |  |
| Extinction coefficient                   | n/a                                         |                                 |  |  |
| Largest diff. peak and hole              | 0.409 and -0.317 e.Å <sup>-3</sup>          |                                 |  |  |

### 5. Absortion Spectrum :



Fig. S28 UV -Vis absorption spectrum of BTP 3a in DCM.

## 6. Electrochemical study:



Fig. S29 CV and DPV of BTP 3a vs Ag/AgCl at scan rate of 0.1 V/sec in DCM.

### 7. Computational study:

Quantum mechanical calculations were performed with Gaussian 09 program<sup>S8</sup> provided by CMSD facility of University of Hyderabad. All calculations were carried out by density functional theory (DFT) with Becke's three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP) and the 6-311+G(d,p) basis set was used. The molecular orbitals were visualized using Gauss view 4.1 software. The theoretical excitation energies are obtained for the compound BTP **3a** by applying the TD-SCF method, which are visualized and tabulated by using GaussSum 3.0 software. Fukui function<sup>S9</sup> and dual descriptor study<sup>S10</sup> have been carried out by Multiwfn program,<sup>S11</sup> to generate electron density surfaces to understand the electrophilic and nucleophilic centers, and the corresponding electron density cubes were visualized by using the GaussView 4.1 software. The nucleus independent chemical shift, NICS(1) values were obtained with gauge independent atomic orbital (GIAO) method based on the optimized geometries.<sup>S12</sup> HOMA (Harmonic Oscillator Model of Aromaticity) was calculated by using Ropt (C-C) = 1.388 Å and Ropt (C-N) = 1.334 Å.<sup>S13</sup>

**7.1** Visualization of iso-surface of dual descriptors of the compounds: where the cyan colored mesh (negative), which indicates about the more electron density (favorable for the electrophilic attack) and the violet colored mesh (positive) indicates the less electron density (favorable for nucleophilic attack).

### 7.1.1 Exact evaluation of dual descriptor based on electron density:<sup>S11</sup>

Electron densities have calculated for the electron systems N, N+1 and N-1;  $f^-$  = for electrophilic attack,  $f^+$  = for nucleophilic attack;



### 1. Compound 1a:

| Symbol | Label | Ν         | N-1      | N+1       | $f^{-}$  | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|----------|-----------|----------|----------------------------|------------|
| С      | 1     | 0.019486  | 0.132634 | -0.093563 | 0.113148 | 0.113049                   | -0.00010   |
| С      | 2     | -0.002637 | 0.013405 | -0.12303  | 0.016042 | 0.120393                   | 0.10435    |

### 2. Compound 5a:



| Symbol | Label | Ν         | N-1      | N+1       | $f^{\cdot}$ | $f^+$    | $\Delta f$ |
|--------|-------|-----------|----------|-----------|-------------|----------|------------|
| С      | 1     | 0.106572  | 0.109011 | -0.033854 | 0.002439    | 0.140426 | 0.13799    |
| С      | 17    | 0.027139  | 0.004871 | -0.112539 | -0.022268   | 0.139678 | 0.16195    |
| Br     | 22    | -0.101502 | 0.2037   | -0.151827 | 0.305202    | 0.050325 | -0.25488   |

### 3. Compound 9:

| Electron density surfaces<br>Mesh color (cyan = - ve; violet = + ve) | Corresponding atomic labels |
|----------------------------------------------------------------------|-----------------------------|

| Symbol | Label | Ν         | N-1       | N+1       | $f^{-}$  | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|-----------|-----------|----------|----------------------------|------------|
| С      | 1     | 0.054083  | 0.135465  | -0.114745 | 0.081382 | 0.168828                   | 0.08745    |
| С      | 16    | -0.032076 | -0.016716 | -0.142837 | 0.015360 | 0.110761                   | 0.09540    |

### 4. Compound 9a:



| Symbol | Label | Ν         | N-1       | N+1       | $f^{-}$   | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|-----------|-----------|-----------|----------------------------|------------|
| С      | 1     | 0.136565  | 0.114857  | -0.051147 | -0.021708 | 0.187712                   | 0.20942    |
| С      | 16    | 0.00299   | -0.022647 | -0.133547 | -0.025637 | 0.136537                   | 0.16217    |
| Br     | 31    | -0.096586 | 0.198358  | -0.152781 | 0.294944  | 0.056195                   | -0.23875   |

### 5. Compound 9b:

| Electron density surfaces<br>Mesh color (cyan = - ve; violet = + ve) | Corresponding atomic labels |
|----------------------------------------------------------------------|-----------------------------|

| Symbol | Label | Ν         | N-1      | N+1       | $f^{-}$   | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|----------|-----------|-----------|----------------------------|------------|
| С      | 1     | 0.08926   | 0.126615 | -0.106996 | 0.037355  | 0.196256                   | 0.15890    |
| С      | 15    | 0.059488  | 0.021465 | -0.076607 | -0.038023 | 0.136095                   | 0.17412    |
| Br     | 31    | -0.098893 | 0.175836 | -0.131365 | 0.274729  | 0.032472                   | -0.24226   |

### 6. Compound 6:



| Symbol | Label | Ν         | N-1       | N+1       | $f^{-}$   | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|-----------|-----------|-----------|----------------------------|------------|
| С      | 1     | 0.104927  | 0.067824  | -0.019533 | -0.037103 | 0.124460                   | 0.16156    |
| С      | 21    | -0.003191 | -0.018304 | -0.121349 | -0.015113 | 0.118158                   | 0.13327    |
| Br     | 41    | -0.07848  | 0.113943  | -0.076482 | 0.192423  | -0.001998                  | -0.19442   |

### 7. Compound 7:

| Electron density surfaces<br>Mesh color (cyan = - ve; violet = + ve) | Corresponding atomic labels |
|----------------------------------------------------------------------|-----------------------------|

| Symbol | Label | Ν         | N-1       | N+1       | $f^{-}$   | $f^{\scriptscriptstyle +}$ | $\Delta f$ |
|--------|-------|-----------|-----------|-----------|-----------|----------------------------|------------|
| С      | 21    | -0.013466 | -0.029369 | -0.102527 | -0.015903 | 0.089061                   | 0.10496    |
| С      | 39    | 0.125477  | 0.038207  | -0.005638 | -0.087270 | 0.131115                   | 0.21839    |
| Br     | 58    | -0.081544 | 0.043173  | -0.060569 | 0.124717  | -0.020975                  | -0.14569   |



Fig. S 30 Selected molecular orbital diagram of the optimized structure of BTP 3a.



Fig. S31 Theoretical absorption spectrum (by TD-DFT) of BTP 3a.

| Table S4: | Summary | of theoretical | excitation | energies | of BTP | 3a |
|-----------|---------|----------------|------------|----------|--------|----|
|           | J       |                |            | 0        |        |    |

| SI.<br>No. | Wavelength<br>(nm) | Oscillator<br>Strength | Major contributions                                                          |
|------------|--------------------|------------------------|------------------------------------------------------------------------------|
| 1          | 312.87             | 0.2631                 | H-1 —> L+1 (22%), H-1 —> L+2 (16%), HOMO —> LUMO (21%),<br>HOMO —> L+2 (20%) |
| 2          | 312.84             | 0.2636                 | H-1 —> LUMO (22%), H-1 —> L+2 (20%), HOMO —> L+1 (22%),<br>HOMO —> L+2 (16%) |
| 3          | 305.27             | 0.0932                 | H-1 —> LUMO (10%), H-1 —> L+2 (25%), HOMO —> L+1 (10%),<br>HOMO —> L+2 (38%) |
| 4          | 305.25             | 0.0935                 | H-1 —> L+1 (10%), H-1 —> L+2 (38%), HOMO —> LUMO (10%),<br>HOMO —> L+2 (25%) |
| 5          | 243.22             | 0.1063                 | H-2 —> LUMO (91%), H-1 —> L+10 (2%), HOMO —> L+9 (2%)                        |
| 6          | 243.21             | 0.1064                 | H-2 -> L+1 (91%), H-1 -> L+9 (2%), HOMO -> L+10 (2%)                         |

| Atom<br>Label | Symbol | X        | У        | Z        | Atom<br>Label | Symbol | X        | У        | Z        |
|---------------|--------|----------|----------|----------|---------------|--------|----------|----------|----------|
| 1             | 0      | -1.29239 | 4.988344 | -6.6E-05 | 31            | Н      | -5.52449 | -3.29128 | 0.881703 |
| 2             | 0      | -3.67434 | -3.61336 | -0.0001  | 32            | С      | -5.39367 | -5.27444 | 0.00058  |
| 3             | 0      | 4.966564 | -1.37532 | -9.3E-05 | 33            | Н      | -4.97304 | -5.7553  | -0.88561 |
| 4             | 0      | 3.19861  | -2.76723 | -0.0004  | 34            | Η      | -6.47408 | -5.44259 | 0.000271 |
| 5             | 0      | -3.99509 | -1.38629 | -8.3E-05 | 35            | Η      | -4.97366 | -5.75446 | 0.887515 |
| 6             | 0      | 0.797036 | 4.153454 | 0.000216 | 36            | С      | -3.62164 | 3.252689 | -7.1E-05 |
| 7             | Ν      | 2.159736 | 1.713534 | 0.000154 | 37            | Н      | -4.53542 | 2.654622 | 0.000798 |
| 8             | Ν      | -2.56389 | 1.01332  | 0.000001 | 38            | Η      | -3.63157 | 3.902942 | -0.87753 |
| 9             | Ν      | 0.404338 | -2.72743 | -9.7E-05 | 39            | Η      | -3.63072 | 3.904293 | 0.87637  |
| 10            | С      | -1.02532 | -0.99568 | -0.00005 | 40            | С      | -0.72446 | 6.318279 | -0.00013 |
| 11            | С      | 0.335994 | -1.34813 | -6.1E-05 | 41            | Η      | -0.08977 | 6.430621 | -0.8822  |
| 12            | С      | -3.21827 | -2.3361  | -5.4E-05 | 42            | Η      | -0.08971 | 6.430702 | 0.88188  |
| 13            | С      | 3.257675 | 0.913265 | 0.000076 | 43            | С      | 5.834565 | -2.5319  | -0.00031 |
| 14            | С      | -2.41978 | 2.364294 | 0.000024 | 44            | Η      | 5.615043 | -3.13742 | -0.88272 |
| 15            | С      | -1.04794 | 2.653268 | 0.000066 | 45            | Н      | 5.61444  | -3.13826 | 0.881355 |
| 16            | С      | 2.822079 | -0.41929 | -4.6E-05 | 46            | С      | -1.00654 | -4.76308 | -0.00015 |
| 17            | С      | 1.37494  | -0.39044 | 0.000069 | 47            | Н      | -0.03189 | -5.25575 | -0.0013  |
| 18            | С      | -1.33522 | 0.38293  | 0.000033 | 48            | Н      | -1.56666 | -5.09643 | -0.87648 |
| 19            | С      | 3.632501 | -1.6195  | -0.00016 | 49            | Н      | -1.56462 | -5.09665 | 0.877429 |
| 20            | С      | 0.99948  | 0.964715 | 0.000151 | 50            | С      | -1.87265 | 7.307642 | -0.00014 |
| 21            | С      | -0.41384 | 3.955197 | 0.000083 | 51            | Н      | -2.49874 | 7.183821 | -0.8868  |
| 22            | С      | -0.34935 | 1.385655 | 0.0001   | 52            | Н      | -1.47845 | 8.327546 | 0.00001  |
| 23            | С      | -1.77376 | -2.23449 | -0.00004 | 53            | Н      | -2.49887 | 7.183628 | 0.88641  |
| 24            | С      | -0.83771 | -3.27807 | -0.00015 | 54            | С      | 7.265209 | -2.03133 | 0.000401 |
| 25            | С      | 4.627933 | 1.510014 | 0.00023  | 55            | Н      | 7.470597 | -1.42641 | -0.8858  |
| 26            | Н      | 5.19648  | 1.19238  | -0.87648 | 56            | Н      | 7.952133 | -2.88204 | 0.000336 |
| 27            | Н      | 5.195949 | 1.193069 | 0.87757  | 57            | Н      | 7.469919 | -1.42709 | 0.887219 |
| 28            | Н      | 4.566653 | 2.600381 | -0.00019 | 58            | Н      | 1.302794 | -3.20466 | -0.00014 |
| 29            | С      | -5.11018 | -3.78556 | -5.9E-05 | 59            | Н      | 2.123769 | 2.730242 | 0.000242 |
| 30            | Н      | -5.52443 | -3.29209 | -0.88232 | 60            | Н      | -3.42631 | 0.473648 | -0.00018 |

 Table S5: Cartesian coordinates of the optimized structure BTP 3a

| Atom Label | Symbol | x        | У        | Z        |
|------------|--------|----------|----------|----------|
| 1          | Ν      | -0.95449 | -2.58909 | -0.00047 |
| 2          | Ν      | 2.719318 | 0.468068 | 0.000166 |
| 3          | Ν      | -1.76502 | 2.121101 | 0.000007 |
| 4          | С      | 0.354683 | 1.388403 | 0.000308 |
| 5          | С      | -0.99462 | 0.978997 | 0.000526 |
| 6          | С      | -2.32791 | -2.43689 | -0.00013 |
| 7          | С      | 3.274451 | -0.79733 | 0.000286 |
| 8          | С      | 2.263801 | -1.72491 | 0.00004  |
| 9          | С      | -2.62564 | -1.09782 | 0.000456 |
| 10         | С      | -1.37974 | -0.38707 | 0.000288 |
| 11         | С      | 1.345045 | 0.371751 | -0.00016 |
| 12         | С      | -0.35049 | -1.35093 | -0.0001  |
| 13         | С      | 1.025131 | -1.0016  | -0.00035 |
| 14         | С      | 0.362009 | 2.822795 | -0.00039 |
| 15         | С      | -0.94655 | 3.234407 | -0.00038 |
| 16         | Н      | -2.77031 | 2.142882 | 0.00005  |
| 17         | Н      | -0.47073 | -3.47058 | -0.00076 |
| 18         | Н      | 3.240594 | 1.327962 | 0.000568 |
| 19         | Н      | -1.36495 | 4.227908 | -0.00029 |
| 20         | Н      | 1.219853 | 3.477522 | -0.00057 |
| 21         | Н      | 4.344081 | -0.9315  | 0.000266 |
| 22         | Н      | 2.402442 | -2.79513 | -0.00026 |
| 23         | Н      | -2.97906 | -3.29604 | 0.000004 |
| 24         | Н      | -3.62161 | -0.6824  | 0.000713 |

Table S6: Cartesian coordinates of the optimized structure BTP (free)

| (        | Compounds                                                                           | NICS(1)                      | HOMA                   |
|----------|-------------------------------------------------------------------------------------|------------------------------|------------------------|
| BTP (3a) | EtO <sub>2</sub> C<br>N<br>HN<br>CO <sub>2</sub> Et<br>N<br>H<br>EtO <sub>2</sub> C | A = - 10.45<br>B = - 9.21    | A = 0.847<br>B = 0.484 |
| BTP free |                                                                                     | C = -9.85<br>D = -9.38       | C = 0.767<br>D = 0.534 |
| Benzene  | E                                                                                   | E = -10.20 *                 | E = 0.972              |
| Pyrrole  | N<br>H                                                                              | F = -10.09 *                 | F = 0.693              |
| Indole   | G H<br>N<br>H                                                                       | G = -10.83 *<br>H = -10.18 * | G = 0.894<br>H = 0.422 |

**Table S7:** Summary of calculated NICS (1) and HOMA values.

NICS values calculated by using B3LYP/6-311+G(d,p) by NMR GIAO method in Gaussian 09. '\*' = from ref S13.

**8. TGA-DTA profiles:** DTA-TG was measured at the scanning rate of 10 °C min<sup>-1</sup> under nitrogen atmosphere.



Fig. S32 TGA profile for BTP 3a.



Fig. S33 TGA profile for BTP 3b.

### 9. References:

S1 SAINT, version 6.45 /8/6/03 and version 8.34A, Bruker AXS, 2003, 2014.

S2 G. M. Sheldrick, SADABS and SADABS 2014/5, *Program for Empirical Absorption Correction of Area Detector Data*, University of Göttingen, Germany, 1997, 2014.

S3 (a) SHELXL -Version 2014/7; *Program for the Solution and Refinement of Crystal Structures*, University of Göttingen, Germany, 1993-2014; (b) G. M. Sheldrick, *Acta Cryst.* 2008, **A64**, 112.

S4 (a) A. L. Spek, *PLATON*, *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands, 2002. (b) A. L. Spek, *J. Appl. Cryst.*, 2003, **36**, 7.

S5 (a) M. W. Roomi and S. F. MacDonald, *Can. J. Chem.*, 1970, **48**, 1689-1697; (b) A. Treibs and H. G. Kolm, *Justus Liebigs Annalen der Chemie.*, 1958, **614**, 199-205; (c) H. Fischer, H. Beller and A. Stern, *Berichte der Deutschen Chemischen Gesellschaft.*, 1928, **61B**, 1074-1083; (d) M. B. Skaddan, *J. Label Compd. Radiopharm*, 2010, **53**, 73-77.

S6 A. V. Lygin, O. V. Larionov, V. S. Korotkov and A. de Meijere, Chem. -Eur. J., 2009, 15, 227-236.

S7 J. Carpenter, Y. Wang, G. Wu, J. Feng, X.-Y. Ye, C. L. Morales, M. Broekema, K. A. Rossi, K. J. Miller, B. J. Murphy, G. Wu, S. E. Malmstrom, A. V. Azzara, P. M. Sher, J. M. Fevig, A. Alt, R. L. Bertekap, M. J. Cullen, T. M. Harper, K. Foster, E. Luk, Q. Xiang, M. F. Grubb, J. A. Robl and D. A. Wacker, *J. Med. Chem.* 2017, 14, 6166-6190.
S8 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian, Inc.*, Wallingford CT, 2010.

S9 R. G. Parr and W. Yang, J. Am. Chem. Soc., 1984, 106, 4049-4050.

S10 C. Morrell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 2005, 109, 205-212.

S11 (a) T. Lu, Multiwfn 3.6 A Multifunctional Wavefunction Analyzer; <u>http://sobereva.com-/multiwfn/index.html</u>;
(b) T. Lu and F. Chen, *J. Comput. Chem.*, 2012, 33, 580-592.

S12 (a) P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317-6318; (b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. von R. Schleyer, *Chem. Rev.*, 2005, **105**, 3842-3888.

S13 (a) T. M. Krygowski and M. Cryanski, *Tetrahedron*, 1996, **52**, 1713-1722; (b) T. M. Krygowski and M. Cryanski, *Tetrahedron*, 1996, **52**, 10255-10264; (c) T. M. Krygowski and M. Cryanski, *Chem. Rev.*, 2001, **101**, 1385-1419.